Metamath Proof Explorer


Theorem resmpt

Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013)

Ref Expression
Assertion resmpt
|- ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 resopab2
 |-  ( B C_ A -> ( { <. x , y >. | ( x e. A /\ y = C ) } |` B ) = { <. x , y >. | ( x e. B /\ y = C ) } )
2 df-mpt
 |-  ( x e. A |-> C ) = { <. x , y >. | ( x e. A /\ y = C ) }
3 2 reseq1i
 |-  ( ( x e. A |-> C ) |` B ) = ( { <. x , y >. | ( x e. A /\ y = C ) } |` B )
4 df-mpt
 |-  ( x e. B |-> C ) = { <. x , y >. | ( x e. B /\ y = C ) }
5 1 3 4 3eqtr4g
 |-  ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )