Step |
Hyp |
Ref |
Expression |
1 |
|
resres |
|- ( ( ( x e. A |-> C ) |` A ) |` B ) = ( ( x e. A |-> C ) |` ( A i^i B ) ) |
2 |
|
ssid |
|- A C_ A |
3 |
|
resmpt |
|- ( A C_ A -> ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) ) |
4 |
2 3
|
ax-mp |
|- ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) |
5 |
4
|
reseq1i |
|- ( ( ( x e. A |-> C ) |` A ) |` B ) = ( ( x e. A |-> C ) |` B ) |
6 |
|
inss1 |
|- ( A i^i B ) C_ A |
7 |
|
resmpt |
|- ( ( A i^i B ) C_ A -> ( ( x e. A |-> C ) |` ( A i^i B ) ) = ( x e. ( A i^i B ) |-> C ) ) |
8 |
6 7
|
ax-mp |
|- ( ( x e. A |-> C ) |` ( A i^i B ) ) = ( x e. ( A i^i B ) |-> C ) |
9 |
1 5 8
|
3eqtr3i |
|- ( ( x e. A |-> C ) |` B ) = ( x e. ( A i^i B ) |-> C ) |