Metamath Proof Explorer


Theorem resmptd

Description: Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis resmptd.b
|- ( ph -> B C_ A )
Assertion resmptd
|- ( ph -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 resmptd.b
 |-  ( ph -> B C_ A )
2 resmpt
 |-  ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )
3 1 2 syl
 |-  ( ph -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )