Step |
Hyp |
Ref |
Expression |
1 |
|
resmptf.a |
|- F/_ x A |
2 |
|
resmptf.b |
|- F/_ x B |
3 |
|
resmpt |
|- ( B C_ A -> ( ( y e. A |-> [_ y / x ]_ C ) |` B ) = ( y e. B |-> [_ y / x ]_ C ) ) |
4 |
|
nfcv |
|- F/_ y A |
5 |
|
nfcv |
|- F/_ y C |
6 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
7 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
8 |
1 4 5 6 7
|
cbvmptf |
|- ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C ) |
9 |
8
|
reseq1i |
|- ( ( x e. A |-> C ) |` B ) = ( ( y e. A |-> [_ y / x ]_ C ) |` B ) |
10 |
|
nfcv |
|- F/_ y B |
11 |
2 10 5 6 7
|
cbvmptf |
|- ( x e. B |-> C ) = ( y e. B |-> [_ y / x ]_ C ) |
12 |
3 9 11
|
3eqtr4g |
|- ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) ) |