Metamath Proof Explorer


Theorem resmpti

Description: Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis resmpti.1
|- B C_ A
Assertion resmpti
|- ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C )

Proof

Step Hyp Ref Expression
1 resmpti.1
 |-  B C_ A
2 resmpt
 |-  ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )
3 1 2 ax-mp
 |-  ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C )