Step |
Hyp |
Ref |
Expression |
1 |
|
resopab |
|- ( { <. x , y >. | ( x e. B /\ ph ) } |` A ) = { <. x , y >. | ( x e. A /\ ( x e. B /\ ph ) ) } |
2 |
|
ssel |
|- ( A C_ B -> ( x e. A -> x e. B ) ) |
3 |
2
|
pm4.71d |
|- ( A C_ B -> ( x e. A <-> ( x e. A /\ x e. B ) ) ) |
4 |
3
|
anbi1d |
|- ( A C_ B -> ( ( x e. A /\ ph ) <-> ( ( x e. A /\ x e. B ) /\ ph ) ) ) |
5 |
|
anass |
|- ( ( ( x e. A /\ x e. B ) /\ ph ) <-> ( x e. A /\ ( x e. B /\ ph ) ) ) |
6 |
4 5
|
bitr2di |
|- ( A C_ B -> ( ( x e. A /\ ( x e. B /\ ph ) ) <-> ( x e. A /\ ph ) ) ) |
7 |
6
|
opabbidv |
|- ( A C_ B -> { <. x , y >. | ( x e. A /\ ( x e. B /\ ph ) ) } = { <. x , y >. | ( x e. A /\ ph ) } ) |
8 |
1 7
|
eqtrid |
|- ( A C_ B -> ( { <. x , y >. | ( x e. B /\ ph ) } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } ) |