Step |
Hyp |
Ref |
Expression |
1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
2 |
|
elin |
|- ( x e. ( B i^i dom F ) <-> ( x e. B /\ x e. dom F ) ) |
3 |
2
|
biancomi |
|- ( x e. ( B i^i dom F ) <-> ( x e. dom F /\ x e. B ) ) |
4 |
3
|
anbi1i |
|- ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) ) |
5 |
|
fvres |
|- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
6 |
5
|
eleq1d |
|- ( x e. B -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) |
7 |
6
|
adantl |
|- ( ( x e. dom F /\ x e. B ) -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) |
8 |
7
|
pm5.32i |
|- ( ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) |
9 |
4 8
|
bitri |
|- ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) |
10 |
9
|
a1i |
|- ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) ) |
11 |
|
an32 |
|- ( ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) |
12 |
10 11
|
bitrdi |
|- ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
13 |
|
fnfun |
|- ( F Fn dom F -> Fun F ) |
14 |
13
|
funresd |
|- ( F Fn dom F -> Fun ( F |` B ) ) |
15 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
16 |
|
df-fn |
|- ( ( F |` B ) Fn ( B i^i dom F ) <-> ( Fun ( F |` B ) /\ dom ( F |` B ) = ( B i^i dom F ) ) ) |
17 |
14 15 16
|
sylanblrc |
|- ( F Fn dom F -> ( F |` B ) Fn ( B i^i dom F ) ) |
18 |
|
elpreima |
|- ( ( F |` B ) Fn ( B i^i dom F ) -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) |
19 |
17 18
|
syl |
|- ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) |
20 |
|
elin |
|- ( x e. ( ( `' F " A ) i^i B ) <-> ( x e. ( `' F " A ) /\ x e. B ) ) |
21 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) |
22 |
21
|
anbi1d |
|- ( F Fn dom F -> ( ( x e. ( `' F " A ) /\ x e. B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
23 |
20 22
|
syl5bb |
|- ( F Fn dom F -> ( x e. ( ( `' F " A ) i^i B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
24 |
12 19 23
|
3bitr4d |
|- ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) |
25 |
1 24
|
sylbi |
|- ( Fun F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) |
26 |
25
|
eqrdv |
|- ( Fun F -> ( `' ( F |` B ) " A ) = ( ( `' F " A ) i^i B ) ) |