| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfn |  |-  ( Fun F <-> F Fn dom F ) | 
						
							| 2 |  | elin |  |-  ( x e. ( B i^i dom F ) <-> ( x e. B /\ x e. dom F ) ) | 
						
							| 3 | 2 | biancomi |  |-  ( x e. ( B i^i dom F ) <-> ( x e. dom F /\ x e. B ) ) | 
						
							| 4 | 3 | anbi1i |  |-  ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) ) | 
						
							| 5 |  | fvres |  |-  ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( x e. B -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( x e. dom F /\ x e. B ) -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) | 
						
							| 8 | 7 | pm5.32i |  |-  ( ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) | 
						
							| 9 | 4 8 | bitri |  |-  ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) | 
						
							| 10 | 9 | a1i |  |-  ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) ) | 
						
							| 11 |  | an32 |  |-  ( ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) | 
						
							| 13 |  | fnfun |  |-  ( F Fn dom F -> Fun F ) | 
						
							| 14 | 13 | funresd |  |-  ( F Fn dom F -> Fun ( F |` B ) ) | 
						
							| 15 |  | dmres |  |-  dom ( F |` B ) = ( B i^i dom F ) | 
						
							| 16 |  | df-fn |  |-  ( ( F |` B ) Fn ( B i^i dom F ) <-> ( Fun ( F |` B ) /\ dom ( F |` B ) = ( B i^i dom F ) ) ) | 
						
							| 17 | 14 15 16 | sylanblrc |  |-  ( F Fn dom F -> ( F |` B ) Fn ( B i^i dom F ) ) | 
						
							| 18 |  | elpreima |  |-  ( ( F |` B ) Fn ( B i^i dom F ) -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) | 
						
							| 20 |  | elin |  |-  ( x e. ( ( `' F " A ) i^i B ) <-> ( x e. ( `' F " A ) /\ x e. B ) ) | 
						
							| 21 |  | elpreima |  |-  ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) | 
						
							| 22 | 21 | anbi1d |  |-  ( F Fn dom F -> ( ( x e. ( `' F " A ) /\ x e. B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) | 
						
							| 23 | 20 22 | bitrid |  |-  ( F Fn dom F -> ( x e. ( ( `' F " A ) i^i B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) | 
						
							| 24 | 12 19 23 | 3bitr4d |  |-  ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) | 
						
							| 25 | 1 24 | sylbi |  |-  ( Fun F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) | 
						
							| 26 | 25 | eqrdv |  |-  ( Fun F -> ( `' ( F |` B ) " A ) = ( ( `' F " A ) i^i B ) ) |