| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resqrex |  |-  ( ( A e. RR /\ 0 <_ A ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) | 
						
							| 2 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 3 | 2 | adantr |  |-  ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> x e. CC ) | 
						
							| 4 |  | simprr |  |-  ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( x ^ 2 ) = A ) | 
						
							| 5 |  | rere |  |-  ( x e. RR -> ( Re ` x ) = x ) | 
						
							| 6 | 5 | breq2d |  |-  ( x e. RR -> ( 0 <_ ( Re ` x ) <-> 0 <_ x ) ) | 
						
							| 7 | 6 | biimpar |  |-  ( ( x e. RR /\ 0 <_ x ) -> 0 <_ ( Re ` x ) ) | 
						
							| 8 | 7 | adantrr |  |-  ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> 0 <_ ( Re ` x ) ) | 
						
							| 9 |  | rennim |  |-  ( x e. RR -> ( _i x. x ) e/ RR+ ) | 
						
							| 10 | 9 | adantr |  |-  ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( _i x. x ) e/ RR+ ) | 
						
							| 11 | 4 8 10 | 3jca |  |-  ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 12 | 3 11 | jca |  |-  ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) | 
						
							| 13 | 12 | reximi2 |  |-  ( E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 14 | 1 13 | syl |  |-  ( ( A e. RR /\ 0 <_ A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 15 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) | 
						
							| 17 |  | sqrmo |  |-  ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( A e. RR /\ 0 <_ A ) -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 19 |  | reu5 |  |-  ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) | 
						
							| 20 | 14 18 19 | sylanbrc |  |-  ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |