Step |
Hyp |
Ref |
Expression |
1 |
|
resqrex |
|- ( ( A e. RR /\ 0 <_ A ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
2 |
|
recn |
|- ( x e. RR -> x e. CC ) |
3 |
2
|
adantr |
|- ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> x e. CC ) |
4 |
|
simprr |
|- ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( x ^ 2 ) = A ) |
5 |
|
rere |
|- ( x e. RR -> ( Re ` x ) = x ) |
6 |
5
|
breq2d |
|- ( x e. RR -> ( 0 <_ ( Re ` x ) <-> 0 <_ x ) ) |
7 |
6
|
biimpar |
|- ( ( x e. RR /\ 0 <_ x ) -> 0 <_ ( Re ` x ) ) |
8 |
7
|
adantrr |
|- ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> 0 <_ ( Re ` x ) ) |
9 |
|
rennim |
|- ( x e. RR -> ( _i x. x ) e/ RR+ ) |
10 |
9
|
adantr |
|- ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( _i x. x ) e/ RR+ ) |
11 |
4 8 10
|
3jca |
|- ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
12 |
3 11
|
jca |
|- ( ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) -> ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
13 |
12
|
reximi2 |
|- ( E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
14 |
1 13
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
15 |
|
recn |
|- ( A e. RR -> A e. CC ) |
16 |
15
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
17 |
|
sqrmo |
|- ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
18 |
16 17
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
19 |
|
reu5 |
|- ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
20 |
14 18 19
|
sylanbrc |
|- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |