Step |
Hyp |
Ref |
Expression |
1 |
|
resqrex |
|- ( ( A e. RR /\ 0 <_ A ) -> E. y e. RR ( 0 <_ y /\ ( y ^ 2 ) = A ) ) |
2 |
|
simp1l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> A e. RR ) |
3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
4 |
|
sqrtval |
|- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
5 |
2 3 4
|
3syl |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
6 |
|
simp3r |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( y ^ 2 ) = A ) |
7 |
|
simp3l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> 0 <_ y ) |
8 |
|
rere |
|- ( y e. RR -> ( Re ` y ) = y ) |
9 |
8
|
3ad2ant2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( Re ` y ) = y ) |
10 |
7 9
|
breqtrrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> 0 <_ ( Re ` y ) ) |
11 |
|
rennim |
|- ( y e. RR -> ( _i x. y ) e/ RR+ ) |
12 |
11
|
3ad2ant2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( _i x. y ) e/ RR+ ) |
13 |
6 10 12
|
3jca |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) |
14 |
|
recn |
|- ( y e. RR -> y e. CC ) |
15 |
14
|
3ad2ant2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> y e. CC ) |
16 |
|
resqreu |
|- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
18 |
|
oveq1 |
|- ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) |
19 |
18
|
eqeq1d |
|- ( x = y -> ( ( x ^ 2 ) = A <-> ( y ^ 2 ) = A ) ) |
20 |
|
fveq2 |
|- ( x = y -> ( Re ` x ) = ( Re ` y ) ) |
21 |
20
|
breq2d |
|- ( x = y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` y ) ) ) |
22 |
|
oveq2 |
|- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
23 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
24 |
22 23
|
syl |
|- ( x = y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
25 |
19 21 24
|
3anbi123d |
|- ( x = y -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) |
26 |
25
|
riota2 |
|- ( ( y e. CC /\ E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = y ) ) |
27 |
15 17 26
|
syl2anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = y ) ) |
28 |
13 27
|
mpbid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = y ) |
29 |
5 28
|
eqtrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( sqrt ` A ) = y ) |
30 |
|
simp2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> y e. RR ) |
31 |
29 30
|
eqeltrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( sqrt ` A ) e. RR ) |
32 |
31
|
rexlimdv3a |
|- ( ( A e. RR /\ 0 <_ A ) -> ( E. y e. RR ( 0 <_ y /\ ( y ^ 2 ) = A ) -> ( sqrt ` A ) e. RR ) ) |
33 |
1 32
|
mpd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |