Description: Square root theorem over the reals. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 9-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | resqrtth | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrtthlem | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
|
2 | 1 | simp1d | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |