Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
sqrtval |
|- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
3 |
2
|
eqcomd |
|- ( A e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
4 |
1 3
|
syl |
|- ( A e. RR -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
5 |
4
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
6 |
|
resqrtcl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
7 |
6
|
recnd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
8 |
|
resqreu |
|- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
9 |
|
oveq1 |
|- ( x = ( sqrt ` A ) -> ( x ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
10 |
9
|
eqeq1d |
|- ( x = ( sqrt ` A ) -> ( ( x ^ 2 ) = A <-> ( ( sqrt ` A ) ^ 2 ) = A ) ) |
11 |
|
fveq2 |
|- ( x = ( sqrt ` A ) -> ( Re ` x ) = ( Re ` ( sqrt ` A ) ) ) |
12 |
11
|
breq2d |
|- ( x = ( sqrt ` A ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( sqrt ` A ) ) ) ) |
13 |
|
oveq2 |
|- ( x = ( sqrt ` A ) -> ( _i x. x ) = ( _i x. ( sqrt ` A ) ) ) |
14 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. ( sqrt ` A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
15 |
13 14
|
syl |
|- ( x = ( sqrt ` A ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
16 |
10 12 15
|
3anbi123d |
|- ( x = ( sqrt ` A ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) ) |
17 |
16
|
riota2 |
|- ( ( ( sqrt ` A ) e. CC /\ E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
18 |
7 8 17
|
syl2anc |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
19 |
5 18
|
mpbird |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |