Step |
Hyp |
Ref |
Expression |
1 |
|
resrhm.u |
|- U = ( S |`s X ) |
2 |
|
rhmrcl2 |
|- ( F e. ( S RingHom T ) -> T e. Ring ) |
3 |
1
|
subrgring |
|- ( X e. ( SubRing ` S ) -> U e. Ring ) |
4 |
2 3
|
anim12ci |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( U e. Ring /\ T e. Ring ) ) |
5 |
|
rhmghm |
|- ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) |
6 |
|
subrgsubg |
|- ( X e. ( SubRing ` S ) -> X e. ( SubGrp ` S ) ) |
7 |
1
|
resghm |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |
8 |
5 6 7
|
syl2an |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |
9 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
10 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
11 |
9 10
|
rhmmhm |
|- ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
12 |
9
|
subrgsubm |
|- ( X e. ( SubRing ` S ) -> X e. ( SubMnd ` ( mulGrp ` S ) ) ) |
13 |
|
eqid |
|- ( ( mulGrp ` S ) |`s X ) = ( ( mulGrp ` S ) |`s X ) |
14 |
13
|
resmhm |
|- ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ X e. ( SubMnd ` ( mulGrp ` S ) ) ) -> ( F |` X ) e. ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) ) |
15 |
11 12 14
|
syl2an |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) ) |
16 |
|
rhmrcl1 |
|- ( F e. ( S RingHom T ) -> S e. Ring ) |
17 |
1 9
|
mgpress |
|- ( ( S e. Ring /\ X e. ( SubRing ` S ) ) -> ( ( mulGrp ` S ) |`s X ) = ( mulGrp ` U ) ) |
18 |
16 17
|
sylan |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( mulGrp ` S ) |`s X ) = ( mulGrp ` U ) ) |
19 |
18
|
oveq1d |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) = ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) |
20 |
15 19
|
eleqtrd |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) |
21 |
8 20
|
jca |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( F |` X ) e. ( U GrpHom T ) /\ ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) ) |
22 |
|
eqid |
|- ( mulGrp ` U ) = ( mulGrp ` U ) |
23 |
22 10
|
isrhm |
|- ( ( F |` X ) e. ( U RingHom T ) <-> ( ( U e. Ring /\ T e. Ring ) /\ ( ( F |` X ) e. ( U GrpHom T ) /\ ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) ) ) |
24 |
4 21 23
|
sylanbrc |
|- ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U RingHom T ) ) |