| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resrhm.u |  |-  U = ( S |`s X ) | 
						
							| 2 |  | rhmrcl2 |  |-  ( F e. ( S RingHom T ) -> T e. Ring ) | 
						
							| 3 | 1 | subrgring |  |-  ( X e. ( SubRing ` S ) -> U e. Ring ) | 
						
							| 4 | 2 3 | anim12ci |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( U e. Ring /\ T e. Ring ) ) | 
						
							| 5 |  | rhmghm |  |-  ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 6 |  | subrgsubg |  |-  ( X e. ( SubRing ` S ) -> X e. ( SubGrp ` S ) ) | 
						
							| 7 | 1 | resghm |  |-  ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) | 
						
							| 8 | 5 6 7 | syl2an |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) | 
						
							| 9 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 10 |  | eqid |  |-  ( mulGrp ` T ) = ( mulGrp ` T ) | 
						
							| 11 | 9 10 | rhmmhm |  |-  ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 12 | 9 | subrgsubm |  |-  ( X e. ( SubRing ` S ) -> X e. ( SubMnd ` ( mulGrp ` S ) ) ) | 
						
							| 13 |  | eqid |  |-  ( ( mulGrp ` S ) |`s X ) = ( ( mulGrp ` S ) |`s X ) | 
						
							| 14 | 13 | resmhm |  |-  ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ X e. ( SubMnd ` ( mulGrp ` S ) ) ) -> ( F |` X ) e. ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 15 | 11 12 14 | syl2an |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 16 |  | rhmrcl1 |  |-  ( F e. ( S RingHom T ) -> S e. Ring ) | 
						
							| 17 | 1 9 | mgpress |  |-  ( ( S e. Ring /\ X e. ( SubRing ` S ) ) -> ( ( mulGrp ` S ) |`s X ) = ( mulGrp ` U ) ) | 
						
							| 18 | 16 17 | sylan |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( mulGrp ` S ) |`s X ) = ( mulGrp ` U ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( ( mulGrp ` S ) |`s X ) MndHom ( mulGrp ` T ) ) = ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 20 | 15 19 | eleqtrd |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 21 | 8 20 | jca |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( ( F |` X ) e. ( U GrpHom T ) /\ ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( mulGrp ` U ) = ( mulGrp ` U ) | 
						
							| 23 | 22 10 | isrhm |  |-  ( ( F |` X ) e. ( U RingHom T ) <-> ( ( U e. Ring /\ T e. Ring ) /\ ( ( F |` X ) e. ( U GrpHom T ) /\ ( F |` X ) e. ( ( mulGrp ` U ) MndHom ( mulGrp ` T ) ) ) ) ) | 
						
							| 24 | 4 21 23 | sylanbrc |  |-  ( ( F e. ( S RingHom T ) /\ X e. ( SubRing ` S ) ) -> ( F |` X ) e. ( U RingHom T ) ) |