| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resrhm2b.u |  |-  U = ( T |`s X ) | 
						
							| 2 |  | subrgsubg |  |-  ( X e. ( SubRing ` T ) -> X e. ( SubGrp ` T ) ) | 
						
							| 3 | 1 | resghm2b |  |-  ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) | 
						
							| 5 |  | eqid |  |-  ( mulGrp ` T ) = ( mulGrp ` T ) | 
						
							| 6 | 5 | subrgsubm |  |-  ( X e. ( SubRing ` T ) -> X e. ( SubMnd ` ( mulGrp ` T ) ) ) | 
						
							| 7 |  | eqid |  |-  ( ( mulGrp ` T ) |`s X ) = ( ( mulGrp ` T ) |`s X ) | 
						
							| 8 | 7 | resmhm2b |  |-  ( ( X e. ( SubMnd ` ( mulGrp ` T ) ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) ) ) | 
						
							| 9 | 6 8 | sylan |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) ) ) | 
						
							| 10 |  | subrgrcl |  |-  ( X e. ( SubRing ` T ) -> T e. Ring ) | 
						
							| 11 | 1 5 | mgpress |  |-  ( ( T e. Ring /\ X e. ( SubRing ` T ) ) -> ( ( mulGrp ` T ) |`s X ) = ( mulGrp ` U ) ) | 
						
							| 12 | 10 11 | mpancom |  |-  ( X e. ( SubRing ` T ) -> ( ( mulGrp ` T ) |`s X ) = ( mulGrp ` U ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( mulGrp ` T ) |`s X ) = ( mulGrp ` U ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) = ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) | 
						
							| 15 | 14 | eleq2d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) | 
						
							| 16 | 9 15 | bitrd |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) | 
						
							| 17 | 4 16 | anbi12d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) <-> ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) | 
						
							| 18 | 17 | anbi2d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( S e. Ring /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) <-> ( S e. Ring /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) ) | 
						
							| 19 | 10 | adantr |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> T e. Ring ) | 
						
							| 20 | 19 | biantrud |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( S e. Ring <-> ( S e. Ring /\ T e. Ring ) ) ) | 
						
							| 21 | 20 | anbi1d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( S e. Ring /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) ) | 
						
							| 22 | 1 | subrgring |  |-  ( X e. ( SubRing ` T ) -> U e. Ring ) | 
						
							| 23 | 22 | adantr |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> U e. Ring ) | 
						
							| 24 | 23 | biantrud |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( S e. Ring <-> ( S e. Ring /\ U e. Ring ) ) ) | 
						
							| 25 | 24 | anbi1d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( S e. Ring /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) ) | 
						
							| 26 | 18 21 25 | 3bitr3d |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( ( S e. Ring /\ T e. Ring ) /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) ) | 
						
							| 27 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 28 | 27 5 | isrhm |  |-  ( F e. ( S RingHom T ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) | 
						
							| 29 |  | eqid |  |-  ( mulGrp ` U ) = ( mulGrp ` U ) | 
						
							| 30 | 27 29 | isrhm |  |-  ( F e. ( S RingHom U ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) | 
						
							| 31 | 26 28 30 | 3bitr4g |  |-  ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( S RingHom T ) <-> F e. ( S RingHom U ) ) ) |