Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ress0 | |- ( (/) |`s A ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss | |- (/) C_ A |
|
2 | 0ex | |- (/) e. _V |
|
3 | eqid | |- ( (/) |`s A ) = ( (/) |`s A ) |
|
4 | base0 | |- (/) = ( Base ` (/) ) |
|
5 | 3 4 | ressid2 | |- ( ( (/) C_ A /\ (/) e. _V /\ A e. _V ) -> ( (/) |`s A ) = (/) ) |
6 | 1 2 5 | mp3an12 | |- ( A e. _V -> ( (/) |`s A ) = (/) ) |
7 | reldmress | |- Rel dom |`s |
|
8 | 7 | ovprc2 | |- ( -. A e. _V -> ( (/) |`s A ) = (/) ) |
9 | 6 8 | pm2.61i | |- ( (/) |`s A ) = (/) |