| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ress0g.s |
|- S = ( R |`s A ) |
| 2 |
|
ress0g.b |
|- B = ( Base ` R ) |
| 3 |
|
ress0g.0 |
|- .0. = ( 0g ` R ) |
| 4 |
1 2
|
ressbas2 |
|- ( A C_ B -> A = ( Base ` S ) ) |
| 5 |
4
|
3ad2ant3 |
|- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> A = ( Base ` S ) ) |
| 6 |
|
simp3 |
|- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> A C_ B ) |
| 7 |
2
|
fvexi |
|- B e. _V |
| 8 |
|
ssexg |
|- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> A e. _V ) |
| 10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 11 |
1 10
|
ressplusg |
|- ( A e. _V -> ( +g ` R ) = ( +g ` S ) ) |
| 12 |
9 11
|
syl |
|- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> ( +g ` R ) = ( +g ` S ) ) |
| 13 |
|
simp2 |
|- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> .0. e. A ) |
| 14 |
|
simpl1 |
|- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> R e. Mnd ) |
| 15 |
6
|
sselda |
|- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> x e. B ) |
| 16 |
2 10 3
|
mndlid |
|- ( ( R e. Mnd /\ x e. B ) -> ( .0. ( +g ` R ) x ) = x ) |
| 17 |
14 15 16
|
syl2anc |
|- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> ( .0. ( +g ` R ) x ) = x ) |
| 18 |
2 10 3
|
mndrid |
|- ( ( R e. Mnd /\ x e. B ) -> ( x ( +g ` R ) .0. ) = x ) |
| 19 |
14 15 18
|
syl2anc |
|- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> ( x ( +g ` R ) .0. ) = x ) |
| 20 |
5 12 13 17 19
|
grpidd |
|- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> .0. = ( 0g ` S ) ) |