| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssexg |
|- ( ( B C_ A /\ A e. X ) -> B e. _V ) |
| 2 |
1
|
ancoms |
|- ( ( A e. X /\ B C_ A ) -> B e. _V ) |
| 3 |
|
ressress |
|- ( ( A e. X /\ B e. _V ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 4 |
2 3
|
syldan |
|- ( ( A e. X /\ B C_ A ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 5 |
|
simpr |
|- ( ( A e. X /\ B C_ A ) -> B C_ A ) |
| 6 |
|
sseqin2 |
|- ( B C_ A <-> ( A i^i B ) = B ) |
| 7 |
5 6
|
sylib |
|- ( ( A e. X /\ B C_ A ) -> ( A i^i B ) = B ) |
| 8 |
7
|
oveq2d |
|- ( ( A e. X /\ B C_ A ) -> ( W |`s ( A i^i B ) ) = ( W |`s B ) ) |
| 9 |
4 8
|
eqtrd |
|- ( ( A e. X /\ B C_ A ) -> ( ( W |`s A ) |`s B ) = ( W |`s B ) ) |