| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressascl.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | ressascl.x |  |-  X = ( W |`s S ) | 
						
							| 3 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 4 | 2 3 | resssca |  |-  ( S e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( S e. ( SubRing ` W ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) | 
						
							| 6 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 7 | 2 6 | ressvsca |  |-  ( S e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` X ) ) | 
						
							| 8 |  | eqidd |  |-  ( S e. ( SubRing ` W ) -> x = x ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 10 | 2 9 | subrg1 |  |-  ( S e. ( SubRing ` W ) -> ( 1r ` W ) = ( 1r ` X ) ) | 
						
							| 11 | 7 8 10 | oveq123d |  |-  ( S e. ( SubRing ` W ) -> ( x ( .s ` W ) ( 1r ` W ) ) = ( x ( .s ` X ) ( 1r ` X ) ) ) | 
						
							| 12 | 5 11 | mpteq12dv |  |-  ( S e. ( SubRing ` W ) -> ( x e. ( Base ` ( Scalar ` W ) ) |-> ( x ( .s ` W ) ( 1r ` W ) ) ) = ( x e. ( Base ` ( Scalar ` X ) ) |-> ( x ( .s ` X ) ( 1r ` X ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 14 | 1 3 13 6 9 | asclfval |  |-  A = ( x e. ( Base ` ( Scalar ` W ) ) |-> ( x ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 15 |  | eqid |  |-  ( algSc ` X ) = ( algSc ` X ) | 
						
							| 16 |  | eqid |  |-  ( Scalar ` X ) = ( Scalar ` X ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) | 
						
							| 18 |  | eqid |  |-  ( .s ` X ) = ( .s ` X ) | 
						
							| 19 |  | eqid |  |-  ( 1r ` X ) = ( 1r ` X ) | 
						
							| 20 | 15 16 17 18 19 | asclfval |  |-  ( algSc ` X ) = ( x e. ( Base ` ( Scalar ` X ) ) |-> ( x ( .s ` X ) ( 1r ` X ) ) ) | 
						
							| 21 | 12 14 20 | 3eqtr4g |  |-  ( S e. ( SubRing ` W ) -> A = ( algSc ` X ) ) |