| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d |  |-  D = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 2 |  | atansopn.s |  |-  S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } | 
						
							| 3 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 4 |  | 1re |  |-  1 e. RR | 
						
							| 5 |  | resqcl |  |-  ( y e. RR -> ( y ^ 2 ) e. RR ) | 
						
							| 6 |  | readdcl |  |-  ( ( 1 e. RR /\ ( y ^ 2 ) e. RR ) -> ( 1 + ( y ^ 2 ) ) e. RR ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. CC ) | 
						
							| 9 | 4 | a1i |  |-  ( y e. RR -> 1 e. RR ) | 
						
							| 10 |  | 0lt1 |  |-  0 < 1 | 
						
							| 11 | 10 | a1i |  |-  ( y e. RR -> 0 < 1 ) | 
						
							| 12 |  | sqge0 |  |-  ( y e. RR -> 0 <_ ( y ^ 2 ) ) | 
						
							| 13 | 9 5 11 12 | addgtge0d |  |-  ( y e. RR -> 0 < ( 1 + ( y ^ 2 ) ) ) | 
						
							| 14 |  | 0re |  |-  0 e. RR | 
						
							| 15 |  | ltnle |  |-  ( ( 0 e. RR /\ ( 1 + ( y ^ 2 ) ) e. RR ) -> ( 0 < ( 1 + ( y ^ 2 ) ) <-> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) ) | 
						
							| 16 | 14 7 15 | sylancr |  |-  ( y e. RR -> ( 0 < ( 1 + ( y ^ 2 ) ) <-> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) ) | 
						
							| 17 | 13 16 | mpbid |  |-  ( y e. RR -> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) | 
						
							| 18 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 19 |  | elioc2 |  |-  ( ( -oo e. RR* /\ 0 e. RR ) -> ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) <-> ( ( 1 + ( y ^ 2 ) ) e. RR /\ -oo < ( 1 + ( y ^ 2 ) ) /\ ( 1 + ( y ^ 2 ) ) <_ 0 ) ) ) | 
						
							| 20 | 18 14 19 | mp2an |  |-  ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) <-> ( ( 1 + ( y ^ 2 ) ) e. RR /\ -oo < ( 1 + ( y ^ 2 ) ) /\ ( 1 + ( y ^ 2 ) ) <_ 0 ) ) | 
						
							| 21 | 20 | simp3bi |  |-  ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) -> ( 1 + ( y ^ 2 ) ) <_ 0 ) | 
						
							| 22 | 17 21 | nsyl |  |-  ( y e. RR -> -. ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) ) | 
						
							| 23 | 8 22 | eldifd |  |-  ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 24 | 23 1 | eleqtrrdi |  |-  ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. D ) | 
						
							| 25 | 24 | rgen |  |-  A. y e. RR ( 1 + ( y ^ 2 ) ) e. D | 
						
							| 26 |  | ssrab |  |-  ( RR C_ { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } <-> ( RR C_ CC /\ A. y e. RR ( 1 + ( y ^ 2 ) ) e. D ) ) | 
						
							| 27 | 3 25 26 | mpbir2an |  |-  RR C_ { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } | 
						
							| 28 | 27 2 | sseqtrri |  |-  RR C_ S |