Metamath Proof Explorer


Theorem ressbas2

Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses ressbas.r
|- R = ( W |`s A )
ressbas.b
|- B = ( Base ` W )
Assertion ressbas2
|- ( A C_ B -> A = ( Base ` R ) )

Proof

Step Hyp Ref Expression
1 ressbas.r
 |-  R = ( W |`s A )
2 ressbas.b
 |-  B = ( Base ` W )
3 df-ss
 |-  ( A C_ B <-> ( A i^i B ) = A )
4 3 biimpi
 |-  ( A C_ B -> ( A i^i B ) = A )
5 2 fvexi
 |-  B e. _V
6 5 ssex
 |-  ( A C_ B -> A e. _V )
7 1 2 ressbas
 |-  ( A e. _V -> ( A i^i B ) = ( Base ` R ) )
8 6 7 syl
 |-  ( A C_ B -> ( A i^i B ) = ( Base ` R ) )
9 4 8 eqtr3d
 |-  ( A C_ B -> A = ( Base ` R ) )