Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | |- R = ( W |`s A ) |
|
| ressbas.b | |- B = ( Base ` W ) |
||
| Assertion | ressbas2 | |- ( A C_ B -> A = ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | |- R = ( W |`s A ) |
|
| 2 | ressbas.b | |- B = ( Base ` W ) |
|
| 3 | dfss2 | |- ( A C_ B <-> ( A i^i B ) = A ) |
|
| 4 | 3 | biimpi | |- ( A C_ B -> ( A i^i B ) = A ) |
| 5 | 2 | fvexi | |- B e. _V |
| 6 | 5 | ssex | |- ( A C_ B -> A e. _V ) |
| 7 | 1 2 | ressbas | |- ( A e. _V -> ( A i^i B ) = ( Base ` R ) ) |
| 8 | 6 7 | syl | |- ( A C_ B -> ( A i^i B ) = ( Base ` R ) ) |
| 9 | 4 8 | eqtr3d | |- ( A C_ B -> A = ( Base ` R ) ) |