Step |
Hyp |
Ref |
Expression |
1 |
|
ressbas.r |
|- R = ( W |`s A ) |
2 |
|
ressbas.b |
|- B = ( Base ` W ) |
3 |
1 2
|
ressbas |
|- ( A e. _V -> ( A i^i B ) = ( Base ` R ) ) |
4 |
|
inss2 |
|- ( A i^i B ) C_ B |
5 |
3 4
|
eqsstrrdi |
|- ( A e. _V -> ( Base ` R ) C_ B ) |
6 |
|
reldmress |
|- Rel dom |`s |
7 |
6
|
ovprc2 |
|- ( -. A e. _V -> ( W |`s A ) = (/) ) |
8 |
1 7
|
eqtrid |
|- ( -. A e. _V -> R = (/) ) |
9 |
8
|
fveq2d |
|- ( -. A e. _V -> ( Base ` R ) = ( Base ` (/) ) ) |
10 |
|
base0 |
|- (/) = ( Base ` (/) ) |
11 |
|
0ss |
|- (/) C_ B |
12 |
10 11
|
eqsstrri |
|- ( Base ` (/) ) C_ B |
13 |
9 12
|
eqsstrdi |
|- ( -. A e. _V -> ( Base ` R ) C_ B ) |
14 |
5 13
|
pm2.61i |
|- ( Base ` R ) C_ B |