Description: The base set of a restriction to A is a subset of A . (Contributed by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ressbasss2.r | |- R = ( W |`s A ) |
|
Assertion | ressbasss2 | |- ( Base ` R ) C_ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbasss2.r | |- R = ( W |`s A ) |
|
2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
3 | 1 2 | ressbasssg | |- ( Base ` R ) C_ ( A i^i ( Base ` W ) ) |
4 | inss1 | |- ( A i^i ( Base ` W ) ) C_ A |
|
5 | 3 4 | sstri | |- ( Base ` R ) C_ A |