Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
2 |
1
|
ressinbas |
|- ( S e. V -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
3 |
2
|
adantl |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
4 |
|
eqid |
|- ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) = ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) |
5 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
6 |
|
simpl |
|- ( ( C e. Cat /\ S e. V ) -> C e. Cat ) |
7 |
|
inss2 |
|- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
8 |
7
|
a1i |
|- ( ( C e. Cat /\ S e. V ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
9 |
1 5 6 8
|
fullsubc |
|- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) ) |
10 |
4 9
|
subccat |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. Cat ) |
11 |
|
eqid |
|- ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( S i^i ( Base ` C ) ) ) |
12 |
1 5 6 8 11 4
|
fullresc |
|- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) /\ ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) ) |
13 |
12
|
simpld |
|- ( ( C e. Cat /\ S e. V ) -> ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
14 |
12
|
simprd |
|- ( ( C e. Cat /\ S e. V ) -> ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
15 |
|
ovexd |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`s ( S i^i ( Base ` C ) ) ) e. _V ) |
16 |
13 14 15 10
|
catpropd |
|- ( ( C e. Cat /\ S e. V ) -> ( ( C |`s ( S i^i ( Base ` C ) ) ) e. Cat <-> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. Cat ) ) |
17 |
10 16
|
mpbird |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`s ( S i^i ( Base ` C ) ) ) e. Cat ) |
18 |
3 17
|
eqeltrd |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) e. Cat ) |