Step |
Hyp |
Ref |
Expression |
1 |
|
resscdrg.1 |
|- F = ( CCfld |`s K ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
2
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
|
qssre |
|- QQ C_ RR |
6 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
7 |
2
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
8 |
6 7
|
restcls |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ RR C_ CC /\ QQ C_ RR ) -> ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) ) |
9 |
3 4 5 8
|
mp3an |
|- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) |
10 |
|
qdensere |
|- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
11 |
9 10
|
eqtr3i |
|- ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) = RR |
12 |
|
sseqin2 |
|- ( RR C_ ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) <-> ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) = RR ) |
13 |
11 12
|
mpbir |
|- RR C_ ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) |
14 |
|
simp3 |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> F e. CMetSp ) |
15 |
|
cncms |
|- CCfld e. CMetSp |
16 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
17 |
16
|
subrgss |
|- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
18 |
17
|
3ad2ant1 |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K C_ CC ) |
19 |
1 16 2
|
cmsss |
|- ( ( CCfld e. CMetSp /\ K C_ CC ) -> ( F e. CMetSp <-> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
20 |
15 18 19
|
sylancr |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> ( F e. CMetSp <-> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
21 |
14 20
|
mpbid |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
22 |
1
|
eleq1i |
|- ( F e. DivRing <-> ( CCfld |`s K ) e. DivRing ) |
23 |
|
qsssubdrg |
|- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> QQ C_ K ) |
24 |
22 23
|
sylan2b |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing ) -> QQ C_ K ) |
25 |
24
|
3adant3 |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> QQ C_ K ) |
26 |
6
|
clsss2 |
|- ( ( K e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ QQ C_ K ) -> ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) C_ K ) |
27 |
21 25 26
|
syl2anc |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) C_ K ) |
28 |
13 27
|
sstrid |
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K ) |