Step |
Hyp |
Ref |
Expression |
1 |
|
resscntz.p |
|- H = ( G |`s A ) |
2 |
|
resscntz.z |
|- Z = ( Cntz ` G ) |
3 |
|
resscntz.y |
|- Y = ( Cntz ` H ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
4 3
|
cntzrcl |
|- ( x e. ( Y ` S ) -> ( H e. _V /\ S C_ ( Base ` H ) ) ) |
6 |
5
|
simprd |
|- ( x e. ( Y ` S ) -> S C_ ( Base ` H ) ) |
7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
8 |
1 7
|
ressbasss |
|- ( Base ` H ) C_ ( Base ` G ) |
9 |
6 8
|
sstrdi |
|- ( x e. ( Y ` S ) -> S C_ ( Base ` G ) ) |
10 |
9
|
a1i |
|- ( ( A e. V /\ S C_ A ) -> ( x e. ( Y ` S ) -> S C_ ( Base ` G ) ) ) |
11 |
|
elinel1 |
|- ( x e. ( ( Z ` S ) i^i A ) -> x e. ( Z ` S ) ) |
12 |
7 2
|
cntzrcl |
|- ( x e. ( Z ` S ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) |
13 |
12
|
simprd |
|- ( x e. ( Z ` S ) -> S C_ ( Base ` G ) ) |
14 |
11 13
|
syl |
|- ( x e. ( ( Z ` S ) i^i A ) -> S C_ ( Base ` G ) ) |
15 |
14
|
a1i |
|- ( ( A e. V /\ S C_ A ) -> ( x e. ( ( Z ` S ) i^i A ) -> S C_ ( Base ` G ) ) ) |
16 |
|
elin |
|- ( x e. ( A i^i ( Base ` G ) ) <-> ( x e. A /\ x e. ( Base ` G ) ) ) |
17 |
1 7
|
ressbas |
|- ( A e. V -> ( A i^i ( Base ` G ) ) = ( Base ` H ) ) |
18 |
17
|
eleq2d |
|- ( A e. V -> ( x e. ( A i^i ( Base ` G ) ) <-> x e. ( Base ` H ) ) ) |
19 |
16 18
|
bitr3id |
|- ( A e. V -> ( ( x e. A /\ x e. ( Base ` G ) ) <-> x e. ( Base ` H ) ) ) |
20 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
21 |
1 20
|
ressplusg |
|- ( A e. V -> ( +g ` G ) = ( +g ` H ) ) |
22 |
21
|
oveqd |
|- ( A e. V -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
23 |
21
|
oveqd |
|- ( A e. V -> ( y ( +g ` G ) x ) = ( y ( +g ` H ) x ) ) |
24 |
22 23
|
eqeq12d |
|- ( A e. V -> ( ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
25 |
24
|
ralbidv |
|- ( A e. V -> ( A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
26 |
19 25
|
anbi12d |
|- ( A e. V -> ( ( ( x e. A /\ x e. ( Base ` G ) ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
27 |
26
|
ad2antrr |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( ( ( x e. A /\ x e. ( Base ` G ) ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
28 |
|
anass |
|- ( ( ( x e. A /\ x e. ( Base ` G ) ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
29 |
27 28
|
bitr3di |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) ) |
30 |
|
ssin |
|- ( ( S C_ A /\ S C_ ( Base ` G ) ) <-> S C_ ( A i^i ( Base ` G ) ) ) |
31 |
17
|
sseq2d |
|- ( A e. V -> ( S C_ ( A i^i ( Base ` G ) ) <-> S C_ ( Base ` H ) ) ) |
32 |
30 31
|
syl5bb |
|- ( A e. V -> ( ( S C_ A /\ S C_ ( Base ` G ) ) <-> S C_ ( Base ` H ) ) ) |
33 |
32
|
biimpd |
|- ( A e. V -> ( ( S C_ A /\ S C_ ( Base ` G ) ) -> S C_ ( Base ` H ) ) ) |
34 |
33
|
impl |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> S C_ ( Base ` H ) ) |
35 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
36 |
4 35 3
|
elcntz |
|- ( S C_ ( Base ` H ) -> ( x e. ( Y ` S ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
37 |
34 36
|
syl |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( Y ` S ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
38 |
|
elin |
|- ( x e. ( ( Z ` S ) i^i A ) <-> ( x e. ( Z ` S ) /\ x e. A ) ) |
39 |
38
|
biancomi |
|- ( x e. ( ( Z ` S ) i^i A ) <-> ( x e. A /\ x e. ( Z ` S ) ) ) |
40 |
7 20 2
|
elcntz |
|- ( S C_ ( Base ` G ) -> ( x e. ( Z ` S ) <-> ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
41 |
40
|
adantl |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( Z ` S ) <-> ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
42 |
41
|
anbi2d |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( ( x e. A /\ x e. ( Z ` S ) ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) ) |
43 |
39 42
|
syl5bb |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( ( Z ` S ) i^i A ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) ) |
44 |
29 37 43
|
3bitr4d |
|- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( Y ` S ) <-> x e. ( ( Z ` S ) i^i A ) ) ) |
45 |
44
|
ex |
|- ( ( A e. V /\ S C_ A ) -> ( S C_ ( Base ` G ) -> ( x e. ( Y ` S ) <-> x e. ( ( Z ` S ) i^i A ) ) ) ) |
46 |
10 15 45
|
pm5.21ndd |
|- ( ( A e. V /\ S C_ A ) -> ( x e. ( Y ` S ) <-> x e. ( ( Z ` S ) i^i A ) ) ) |
47 |
46
|
eqrdv |
|- ( ( A e. V /\ S C_ A ) -> ( Y ` S ) = ( ( Z ` S ) i^i A ) ) |