Step |
Hyp |
Ref |
Expression |
1 |
|
resshom.1 |
|- D = ( C |`s A ) |
2 |
|
ressco.2 |
|- .x. = ( comp ` C ) |
3 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
4 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
5 |
|
simp2 |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Base ` ndx ) =/= ( comp ` ndx ) ) |
6 |
5
|
necomd |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( comp ` ndx ) =/= ( Base ` ndx ) ) |
7 |
4 6
|
ax-mp |
|- ( comp ` ndx ) =/= ( Base ` ndx ) |
8 |
1 2 3 7
|
resseqnbas |
|- ( A e. V -> .x. = ( comp ` D ) ) |