Step |
Hyp |
Ref |
Expression |
1 |
|
ressdeg1.h |
|- H = ( R |`s T ) |
2 |
|
ressdeg1.d |
|- D = ( deg1 ` R ) |
3 |
|
ressdeg1.u |
|- U = ( Poly1 ` H ) |
4 |
|
ressdeg1.b |
|- B = ( Base ` U ) |
5 |
|
ressdeg1.p |
|- ( ph -> P e. B ) |
6 |
|
ressdeg1.t |
|- ( ph -> T e. ( SubRing ` R ) ) |
7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
8 |
1 7
|
subrg0 |
|- ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) |
9 |
6 8
|
syl |
|- ( ph -> ( 0g ` R ) = ( 0g ` H ) ) |
10 |
9
|
oveq2d |
|- ( ph -> ( ( coe1 ` P ) supp ( 0g ` R ) ) = ( ( coe1 ` P ) supp ( 0g ` H ) ) ) |
11 |
10
|
supeq1d |
|- ( ph -> sup ( ( ( coe1 ` P ) supp ( 0g ` R ) ) , RR* , < ) = sup ( ( ( coe1 ` P ) supp ( 0g ` H ) ) , RR* , < ) ) |
12 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
13 |
|
eqid |
|- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
14 |
|
eqid |
|- ( Base ` ( PwSer1 ` H ) ) = ( Base ` ( PwSer1 ` H ) ) |
15 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
16 |
12 1 3 4 6 13 14 15
|
ressply1bas2 |
|- ( ph -> B = ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` ( Poly1 ` R ) ) ) ) |
17 |
5 16
|
eleqtrd |
|- ( ph -> P e. ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` ( Poly1 ` R ) ) ) ) |
18 |
17
|
elin2d |
|- ( ph -> P e. ( Base ` ( Poly1 ` R ) ) ) |
19 |
|
eqid |
|- ( coe1 ` P ) = ( coe1 ` P ) |
20 |
2 12 15 7 19
|
deg1val |
|- ( P e. ( Base ` ( Poly1 ` R ) ) -> ( D ` P ) = sup ( ( ( coe1 ` P ) supp ( 0g ` R ) ) , RR* , < ) ) |
21 |
18 20
|
syl |
|- ( ph -> ( D ` P ) = sup ( ( ( coe1 ` P ) supp ( 0g ` R ) ) , RR* , < ) ) |
22 |
|
eqid |
|- ( deg1 ` H ) = ( deg1 ` H ) |
23 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
24 |
22 3 4 23 19
|
deg1val |
|- ( P e. B -> ( ( deg1 ` H ) ` P ) = sup ( ( ( coe1 ` P ) supp ( 0g ` H ) ) , RR* , < ) ) |
25 |
5 24
|
syl |
|- ( ph -> ( ( deg1 ` H ) ` P ) = sup ( ( ( coe1 ` P ) supp ( 0g ` H ) ) , RR* , < ) ) |
26 |
11 21 25
|
3eqtr4d |
|- ( ph -> ( D ` P ) = ( ( deg1 ` H ) ` P ) ) |