| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ressffth.d | 
							 |-  D = ( C |`s S )  | 
						
						
							| 2 | 
							
								
							 | 
							ressffth.i | 
							 |-  I = ( idFunc ` D )  | 
						
						
							| 3 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( D Func D )  | 
						
						
							| 4 | 
							
								
							 | 
							resscat | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) e. Cat )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							eqeltrid | 
							 |-  ( ( C e. Cat /\ S e. V ) -> D e. Cat )  | 
						
						
							| 6 | 
							
								2
							 | 
							idfucl | 
							 |-  ( D e. Cat -> I e. ( D Func D ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( ( C e. Cat /\ S e. V ) -> I e. ( D Func D ) )  | 
						
						
							| 8 | 
							
								
							 | 
							1st2nd | 
							 |-  ( ( Rel ( D Func D ) /\ I e. ( D Func D ) ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. )  | 
						
						
							| 9 | 
							
								3 7 8
							 | 
							sylancr | 
							 |-  ( ( C e. Cat /\ S e. V ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` D ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` D ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 13 | 
							
								12
							 | 
							ressinbas | 
							 |-  ( S e. V -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) )  | 
						
						
							| 15 | 
							
								1 14
							 | 
							eqtrid | 
							 |-  ( ( C e. Cat /\ S e. V ) -> D = ( C |`s ( S i^i ( Base ` C ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( Homf ` C ) = ( Homf ` C )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl | 
							 |-  ( ( C e. Cat /\ S e. V ) -> C e. Cat )  | 
						
						
							| 19 | 
							
								
							 | 
							inss2 | 
							 |-  ( S i^i ( Base ` C ) ) C_ ( Base ` C )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( S i^i ( Base ` C ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) = ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) )  | 
						
						
							| 23 | 
							
								12 17 18 20 21 22
							 | 
							fullresc | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) /\ ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpld | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) )  | 
						
						
							| 25 | 
							
								16 24
							 | 
							eqtrd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) )  | 
						
						
							| 26 | 
							
								15
							 | 
							fveq2d | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) )  | 
						
						
							| 27 | 
							
								23
							 | 
							simprd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							eqtrd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) )  | 
						
						
							| 29 | 
							
								1
							 | 
							ovexi | 
							 |-  D e. _V  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							 |-  ( ( C e. Cat /\ S e. V ) -> D e. _V )  | 
						
						
							| 31 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. _V )  | 
						
						
							| 32 | 
							
								10 11 25 28 30 30 30 31
							 | 
							funcpropd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( D Func D ) = ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								12 17 18 20
							 | 
							fullsubc | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) )  | 
						
						
							| 34 | 
							
								
							 | 
							funcres2 | 
							 |-  ( ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) -> ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) C_ ( D Func C ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) C_ ( D Func C ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqsstrd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( D Func D ) C_ ( D Func C ) )  | 
						
						
							| 37 | 
							
								36 7
							 | 
							sseldd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> I e. ( D Func C ) )  | 
						
						
							| 38 | 
							
								9 37
							 | 
							eqeltrrd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Func C ) )  | 
						
						
							| 39 | 
							
								
							 | 
							df-br | 
							 |-  ( ( 1st ` I ) ( D Func C ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Func C ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sylibr | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( 1st ` I ) ( D Func C ) ( 2nd ` I ) )  | 
						
						
							| 41 | 
							
								
							 | 
							f1oi | 
							 |-  ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 43 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> D e. Cat )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 45 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` D ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) )  | 
						
						
							| 47 | 
							
								2 42 43 44 45 46
							 | 
							idfu2nd | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` D ) y ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( Hom ` D ) y ) = ( x ( Hom ` D ) y ) )  | 
						
						
							| 49 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 50 | 
							
								1 49
							 | 
							resshom | 
							 |-  ( S e. V -> ( Hom ` C ) = ( Hom ` D ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antlr | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Hom ` C ) = ( Hom ` D ) )  | 
						
						
							| 52 | 
							
								2 42 43 45
							 | 
							idfu1 | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` I ) ` x ) = x )  | 
						
						
							| 53 | 
							
								2 42 43 46
							 | 
							idfu1 | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` I ) ` y ) = y )  | 
						
						
							| 54 | 
							
								51 52 53
							 | 
							oveq123d | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) = ( x ( Hom ` D ) y ) )  | 
						
						
							| 55 | 
							
								47 48 54
							 | 
							f1oeq123d | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) <-> ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) ) )  | 
						
						
							| 56 | 
							
								41 55
							 | 
							mpbiri | 
							 |-  ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							ralrimivva | 
							 |-  ( ( C e. Cat /\ S e. V ) -> A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) )  | 
						
						
							| 58 | 
							
								42 44 49
							 | 
							isffth2 | 
							 |-  ( ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) <-> ( ( 1st ` I ) ( D Func C ) ( 2nd ` I ) /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) )  | 
						
						
							| 59 | 
							
								40 57 58
							 | 
							sylanbrc | 
							 |-  ( ( C e. Cat /\ S e. V ) -> ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) )  | 
						
						
							| 60 | 
							
								
							 | 
							df-br | 
							 |-  ( ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( D Full C ) i^i ( D Faith C ) ) )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							sylib | 
							 |-  ( ( C e. Cat /\ S e. V ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( D Full C ) i^i ( D Faith C ) ) )  | 
						
						
							| 62 | 
							
								9 61
							 | 
							eqeltrd | 
							 |-  ( ( C e. Cat /\ S e. V ) -> I e. ( ( D Full C ) i^i ( D Faith C ) ) )  |