Step |
Hyp |
Ref |
Expression |
1 |
|
ressffth.d |
|- D = ( C |`s S ) |
2 |
|
ressffth.i |
|- I = ( idFunc ` D ) |
3 |
|
relfunc |
|- Rel ( D Func D ) |
4 |
|
resscat |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) e. Cat ) |
5 |
1 4
|
eqeltrid |
|- ( ( C e. Cat /\ S e. V ) -> D e. Cat ) |
6 |
2
|
idfucl |
|- ( D e. Cat -> I e. ( D Func D ) ) |
7 |
5 6
|
syl |
|- ( ( C e. Cat /\ S e. V ) -> I e. ( D Func D ) ) |
8 |
|
1st2nd |
|- ( ( Rel ( D Func D ) /\ I e. ( D Func D ) ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
9 |
3 7 8
|
sylancr |
|- ( ( C e. Cat /\ S e. V ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
10 |
|
eqidd |
|- ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` D ) ) |
11 |
|
eqidd |
|- ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` D ) ) |
12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
13 |
12
|
ressinbas |
|- ( S e. V -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
14 |
13
|
adantl |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
15 |
1 14
|
eqtrid |
|- ( ( C e. Cat /\ S e. V ) -> D = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
16 |
15
|
fveq2d |
|- ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) ) |
17 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
18 |
|
simpl |
|- ( ( C e. Cat /\ S e. V ) -> C e. Cat ) |
19 |
|
inss2 |
|- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
20 |
19
|
a1i |
|- ( ( C e. Cat /\ S e. V ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
21 |
|
eqid |
|- ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( S i^i ( Base ` C ) ) ) |
22 |
|
eqid |
|- ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) = ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) |
23 |
12 17 18 20 21 22
|
fullresc |
|- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) /\ ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) ) |
24 |
23
|
simpld |
|- ( ( C e. Cat /\ S e. V ) -> ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
25 |
16 24
|
eqtrd |
|- ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
26 |
15
|
fveq2d |
|- ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) ) |
27 |
23
|
simprd |
|- ( ( C e. Cat /\ S e. V ) -> ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
28 |
26 27
|
eqtrd |
|- ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
29 |
1
|
ovexi |
|- D e. _V |
30 |
29
|
a1i |
|- ( ( C e. Cat /\ S e. V ) -> D e. _V ) |
31 |
|
ovexd |
|- ( ( C e. Cat /\ S e. V ) -> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. _V ) |
32 |
10 11 25 28 30 30 30 31
|
funcpropd |
|- ( ( C e. Cat /\ S e. V ) -> ( D Func D ) = ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
33 |
12 17 18 20
|
fullsubc |
|- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) ) |
34 |
|
funcres2 |
|- ( ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) -> ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) C_ ( D Func C ) ) |
35 |
33 34
|
syl |
|- ( ( C e. Cat /\ S e. V ) -> ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) C_ ( D Func C ) ) |
36 |
32 35
|
eqsstrd |
|- ( ( C e. Cat /\ S e. V ) -> ( D Func D ) C_ ( D Func C ) ) |
37 |
36 7
|
sseldd |
|- ( ( C e. Cat /\ S e. V ) -> I e. ( D Func C ) ) |
38 |
9 37
|
eqeltrrd |
|- ( ( C e. Cat /\ S e. V ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Func C ) ) |
39 |
|
df-br |
|- ( ( 1st ` I ) ( D Func C ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Func C ) ) |
40 |
38 39
|
sylibr |
|- ( ( C e. Cat /\ S e. V ) -> ( 1st ` I ) ( D Func C ) ( 2nd ` I ) ) |
41 |
|
f1oi |
|- ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) |
42 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
43 |
5
|
adantr |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> D e. Cat ) |
44 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
45 |
|
simprl |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` D ) ) |
46 |
|
simprr |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
47 |
2 42 43 44 45 46
|
idfu2nd |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` D ) y ) ) ) |
48 |
|
eqidd |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( Hom ` D ) y ) = ( x ( Hom ` D ) y ) ) |
49 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
50 |
1 49
|
resshom |
|- ( S e. V -> ( Hom ` C ) = ( Hom ` D ) ) |
51 |
50
|
ad2antlr |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Hom ` C ) = ( Hom ` D ) ) |
52 |
2 42 43 45
|
idfu1 |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` I ) ` x ) = x ) |
53 |
2 42 43 46
|
idfu1 |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` I ) ` y ) = y ) |
54 |
51 52 53
|
oveq123d |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) = ( x ( Hom ` D ) y ) ) |
55 |
47 48 54
|
f1oeq123d |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) <-> ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) ) ) |
56 |
41 55
|
mpbiri |
|- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
57 |
56
|
ralrimivva |
|- ( ( C e. Cat /\ S e. V ) -> A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
58 |
42 44 49
|
isffth2 |
|- ( ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) <-> ( ( 1st ` I ) ( D Func C ) ( 2nd ` I ) /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) ) |
59 |
40 57 58
|
sylanbrc |
|- ( ( C e. Cat /\ S e. V ) -> ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) ) |
60 |
|
df-br |
|- ( ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( D Full C ) i^i ( D Faith C ) ) ) |
61 |
59 60
|
sylib |
|- ( ( C e. Cat /\ S e. V ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( D Full C ) i^i ( D Faith C ) ) ) |
62 |
9 61
|
eqeltrd |
|- ( ( C e. Cat /\ S e. V ) -> I e. ( ( D Full C ) i^i ( D Faith C ) ) ) |