Step |
Hyp |
Ref |
Expression |
1 |
|
resshom.1 |
|- D = ( C |`s A ) |
2 |
|
resshom.2 |
|- H = ( Hom ` C ) |
3 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
4 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
5 |
|
simp1 |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Base ` ndx ) =/= ( Hom ` ndx ) ) |
6 |
5
|
necomd |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
7 |
4 6
|
ax-mp |
|- ( Hom ` ndx ) =/= ( Base ` ndx ) |
8 |
1 2 3 7
|
resseqnbas |
|- ( A e. V -> H = ( Hom ` D ) ) |