Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ressid.1 | |- B = ( Base ` W ) |
|
Assertion | ressid | |- ( W e. X -> ( W |`s B ) = W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressid.1 | |- B = ( Base ` W ) |
|
2 | ssid | |- B C_ B |
|
3 | 1 | fvexi | |- B e. _V |
4 | eqid | |- ( W |`s B ) = ( W |`s B ) |
|
5 | 4 1 | ressid2 | |- ( ( B C_ B /\ W e. X /\ B e. _V ) -> ( W |`s B ) = W ) |
6 | 2 3 5 | mp3an13 | |- ( W e. X -> ( W |`s B ) = W ) |