Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ressid.1 | |- B = ( Base ` W ) |
|
| Assertion | ressid | |- ( W e. X -> ( W |`s B ) = W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressid.1 | |- B = ( Base ` W ) |
|
| 2 | ssid | |- B C_ B |
|
| 3 | 1 | fvexi | |- B e. _V |
| 4 | eqid | |- ( W |`s B ) = ( W |`s B ) |
|
| 5 | 4 1 | ressid2 | |- ( ( B C_ B /\ W e. X /\ B e. _V ) -> ( W |`s B ) = W ) |
| 6 | 2 3 5 | mp3an13 | |- ( W e. X -> ( W |`s B ) = W ) |