Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | |- R = ( W |`s A ) |
|
| ressbas.b | |- B = ( Base ` W ) |
||
| Assertion | ressid2 | |- ( ( B C_ A /\ W e. X /\ A e. Y ) -> R = W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | |- R = ( W |`s A ) |
|
| 2 | ressbas.b | |- B = ( Base ` W ) |
|
| 3 | 1 2 | ressval | |- ( ( W e. X /\ A e. Y ) -> R = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
| 4 | iftrue | |- ( B C_ A -> if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) = W ) |
|
| 5 | 3 4 | sylan9eqr | |- ( ( B C_ A /\ ( W e. X /\ A e. Y ) ) -> R = W ) |
| 6 | 5 | 3impb | |- ( ( B C_ A /\ W e. X /\ A e. Y ) -> R = W ) |