Step |
Hyp |
Ref |
Expression |
1 |
|
ressid.1 |
|- B = ( Base ` W ) |
2 |
|
elex |
|- ( A e. X -> A e. _V ) |
3 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
4 |
3 1
|
ressid2 |
|- ( ( B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = W ) |
5 |
|
ssid |
|- B C_ B |
6 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
7 |
|
df-ss |
|- ( B C_ A <-> ( B i^i A ) = B ) |
8 |
7
|
biimpi |
|- ( B C_ A -> ( B i^i A ) = B ) |
9 |
6 8
|
eqtrid |
|- ( B C_ A -> ( A i^i B ) = B ) |
10 |
5 9
|
sseqtrrid |
|- ( B C_ A -> B C_ ( A i^i B ) ) |
11 |
|
elex |
|- ( W e. _V -> W e. _V ) |
12 |
|
inex1g |
|- ( A e. _V -> ( A i^i B ) e. _V ) |
13 |
|
eqid |
|- ( W |`s ( A i^i B ) ) = ( W |`s ( A i^i B ) ) |
14 |
13 1
|
ressid2 |
|- ( ( B C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = W ) |
15 |
10 11 12 14
|
syl3an |
|- ( ( B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s ( A i^i B ) ) = W ) |
16 |
4 15
|
eqtr4d |
|- ( ( B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
17 |
16
|
3expb |
|- ( ( B C_ A /\ ( W e. _V /\ A e. _V ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
18 |
|
inass |
|- ( ( A i^i B ) i^i B ) = ( A i^i ( B i^i B ) ) |
19 |
|
inidm |
|- ( B i^i B ) = B |
20 |
19
|
ineq2i |
|- ( A i^i ( B i^i B ) ) = ( A i^i B ) |
21 |
18 20
|
eqtr2i |
|- ( A i^i B ) = ( ( A i^i B ) i^i B ) |
22 |
21
|
opeq2i |
|- <. ( Base ` ndx ) , ( A i^i B ) >. = <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. |
23 |
22
|
oveq2i |
|- ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. ) |
24 |
3 1
|
ressval2 |
|- ( ( -. B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
25 |
|
inss1 |
|- ( A i^i B ) C_ A |
26 |
|
sstr |
|- ( ( B C_ ( A i^i B ) /\ ( A i^i B ) C_ A ) -> B C_ A ) |
27 |
25 26
|
mpan2 |
|- ( B C_ ( A i^i B ) -> B C_ A ) |
28 |
27
|
con3i |
|- ( -. B C_ A -> -. B C_ ( A i^i B ) ) |
29 |
13 1
|
ressval2 |
|- ( ( -. B C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. ) ) |
30 |
28 11 12 29
|
syl3an |
|- ( ( -. B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. ) ) |
31 |
23 24 30
|
3eqtr4a |
|- ( ( -. B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
32 |
31
|
3expb |
|- ( ( -. B C_ A /\ ( W e. _V /\ A e. _V ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
33 |
17 32
|
pm2.61ian |
|- ( ( W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
34 |
|
reldmress |
|- Rel dom |`s |
35 |
34
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s A ) = (/) ) |
36 |
34
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s ( A i^i B ) ) = (/) ) |
37 |
35 36
|
eqtr4d |
|- ( -. W e. _V -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
38 |
37
|
adantr |
|- ( ( -. W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
39 |
33 38
|
pm2.61ian |
|- ( A e. _V -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
40 |
2 39
|
syl |
|- ( A e. X -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |