Step |
Hyp |
Ref |
Expression |
1 |
|
ressiooinf.a |
|- ( ph -> A C_ RR ) |
2 |
|
ressiooinf.s |
|- S = inf ( A , RR* , < ) |
3 |
|
ressiooinf.n |
|- ( ph -> -. S e. A ) |
4 |
|
ressiooinf.i |
|- I = ( S (,) +oo ) |
5 |
|
ressxr |
|- RR C_ RR* |
6 |
5
|
a1i |
|- ( ph -> RR C_ RR* ) |
7 |
1 6
|
sstrd |
|- ( ph -> A C_ RR* ) |
8 |
7
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR* ) |
9 |
8
|
infxrcld |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) e. RR* ) |
10 |
2 9
|
eqeltrid |
|- ( ( ph /\ x e. A ) -> S e. RR* ) |
11 |
|
pnfxr |
|- +oo e. RR* |
12 |
11
|
a1i |
|- ( ( ph /\ x e. A ) -> +oo e. RR* ) |
13 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR ) |
14 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
15 |
13 14
|
sseldd |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
16 |
7
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
17 |
|
infxrlb |
|- ( ( A C_ RR* /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
18 |
8 14 17
|
syl2anc |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
19 |
2 18
|
eqbrtrid |
|- ( ( ph /\ x e. A ) -> S <_ x ) |
20 |
|
id |
|- ( x = S -> x = S ) |
21 |
20
|
eqcomd |
|- ( x = S -> S = x ) |
22 |
21
|
adantl |
|- ( ( x e. A /\ x = S ) -> S = x ) |
23 |
|
simpl |
|- ( ( x e. A /\ x = S ) -> x e. A ) |
24 |
22 23
|
eqeltrd |
|- ( ( x e. A /\ x = S ) -> S e. A ) |
25 |
24
|
adantll |
|- ( ( ( ph /\ x e. A ) /\ x = S ) -> S e. A ) |
26 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ x = S ) -> -. S e. A ) |
27 |
25 26
|
pm2.65da |
|- ( ( ph /\ x e. A ) -> -. x = S ) |
28 |
27
|
neqned |
|- ( ( ph /\ x e. A ) -> x =/= S ) |
29 |
28
|
necomd |
|- ( ( ph /\ x e. A ) -> S =/= x ) |
30 |
10 16 19 29
|
xrleneltd |
|- ( ( ph /\ x e. A ) -> S < x ) |
31 |
15
|
ltpnfd |
|- ( ( ph /\ x e. A ) -> x < +oo ) |
32 |
10 12 15 30 31
|
eliood |
|- ( ( ph /\ x e. A ) -> x e. ( S (,) +oo ) ) |
33 |
32 4
|
eleqtrrdi |
|- ( ( ph /\ x e. A ) -> x e. I ) |
34 |
33
|
ralrimiva |
|- ( ph -> A. x e. A x e. I ) |
35 |
|
dfss3 |
|- ( A C_ I <-> A. x e. A x e. I ) |
36 |
34 35
|
sylibr |
|- ( ph -> A C_ I ) |