Step |
Hyp |
Ref |
Expression |
1 |
|
ressioosup.a |
|- ( ph -> A C_ RR ) |
2 |
|
ressioosup.s |
|- S = sup ( A , RR* , < ) |
3 |
|
ressioosup.n |
|- ( ph -> -. S e. A ) |
4 |
|
ressioosup.i |
|- I = ( -oo (,) S ) |
5 |
|
mnfxr |
|- -oo e. RR* |
6 |
5
|
a1i |
|- ( ( ph /\ x e. A ) -> -oo e. RR* ) |
7 |
|
ressxr |
|- RR C_ RR* |
8 |
7
|
a1i |
|- ( ph -> RR C_ RR* ) |
9 |
1 8
|
sstrd |
|- ( ph -> A C_ RR* ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR* ) |
11 |
10
|
supxrcld |
|- ( ( ph /\ x e. A ) -> sup ( A , RR* , < ) e. RR* ) |
12 |
2 11
|
eqeltrid |
|- ( ( ph /\ x e. A ) -> S e. RR* ) |
13 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR ) |
14 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
15 |
13 14
|
sseldd |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
16 |
15
|
mnfltd |
|- ( ( ph /\ x e. A ) -> -oo < x ) |
17 |
9
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
18 |
|
supxrub |
|- ( ( A C_ RR* /\ x e. A ) -> x <_ sup ( A , RR* , < ) ) |
19 |
10 14 18
|
syl2anc |
|- ( ( ph /\ x e. A ) -> x <_ sup ( A , RR* , < ) ) |
20 |
2
|
a1i |
|- ( ( ph /\ x e. A ) -> S = sup ( A , RR* , < ) ) |
21 |
20
|
eqcomd |
|- ( ( ph /\ x e. A ) -> sup ( A , RR* , < ) = S ) |
22 |
19 21
|
breqtrd |
|- ( ( ph /\ x e. A ) -> x <_ S ) |
23 |
|
id |
|- ( x = S -> x = S ) |
24 |
23
|
eqcomd |
|- ( x = S -> S = x ) |
25 |
24
|
adantl |
|- ( ( x e. A /\ x = S ) -> S = x ) |
26 |
|
simpl |
|- ( ( x e. A /\ x = S ) -> x e. A ) |
27 |
25 26
|
eqeltrd |
|- ( ( x e. A /\ x = S ) -> S e. A ) |
28 |
27
|
adantll |
|- ( ( ( ph /\ x e. A ) /\ x = S ) -> S e. A ) |
29 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ x = S ) -> -. S e. A ) |
30 |
28 29
|
pm2.65da |
|- ( ( ph /\ x e. A ) -> -. x = S ) |
31 |
30
|
neqned |
|- ( ( ph /\ x e. A ) -> x =/= S ) |
32 |
17 12 22 31
|
xrleneltd |
|- ( ( ph /\ x e. A ) -> x < S ) |
33 |
6 12 15 16 32
|
eliood |
|- ( ( ph /\ x e. A ) -> x e. ( -oo (,) S ) ) |
34 |
33 4
|
eleqtrrdi |
|- ( ( ph /\ x e. A ) -> x e. I ) |
35 |
34
|
ralrimiva |
|- ( ph -> A. x e. A x e. I ) |
36 |
|
dfss3 |
|- ( A C_ I <-> A. x e. A x e. I ) |
37 |
35 36
|
sylibr |
|- ( ph -> A C_ I ) |