Metamath Proof Explorer


Theorem ressip

Description: The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses resssca.1
|- H = ( G |`s A )
ressip.2
|- ., = ( .i ` G )
Assertion ressip
|- ( A e. V -> ., = ( .i ` H ) )

Proof

Step Hyp Ref Expression
1 resssca.1
 |-  H = ( G |`s A )
2 ressip.2
 |-  ., = ( .i ` G )
3 ipid
 |-  .i = Slot ( .i ` ndx )
4 ipndxnbasendx
 |-  ( .i ` ndx ) =/= ( Base ` ndx )
5 1 2 3 4 resseqnbas
 |-  ( A e. V -> ., = ( .i ` H ) )