Metamath Proof Explorer


Theorem ressle

Description: le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Hypotheses ressle.1
|- W = ( K |`s A )
ressle.2
|- .<_ = ( le ` K )
Assertion ressle
|- ( A e. V -> .<_ = ( le ` W ) )

Proof

Step Hyp Ref Expression
1 ressle.1
 |-  W = ( K |`s A )
2 ressle.2
 |-  .<_ = ( le ` K )
3 pleid
 |-  le = Slot ( le ` ndx )
4 plendxnbasendx
 |-  ( le ` ndx ) =/= ( Base ` ndx )
5 1 2 3 4 resseqnbas
 |-  ( A e. V -> .<_ = ( le ` W ) )