Step |
Hyp |
Ref |
Expression |
1 |
|
resslemOLD.r |
|- R = ( W |`s A ) |
2 |
|
resslemOLD.e |
|- C = ( E ` W ) |
3 |
|
resslemOLD.f |
|- E = Slot N |
4 |
|
resslemOLD.n |
|- N e. NN |
5 |
|
resslemOLD.b |
|- 1 < N |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
1 6
|
ressid2 |
|- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
8 |
7
|
fveq2d |
|- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
9 |
8
|
3expib |
|- ( ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
10 |
1 6
|
ressval2 |
|- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
11 |
10
|
fveq2d |
|- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
12 |
3 4
|
ndxid |
|- E = Slot ( E ` ndx ) |
13 |
3 4
|
ndxarg |
|- ( E ` ndx ) = N |
14 |
|
1re |
|- 1 e. RR |
15 |
14 5
|
gtneii |
|- N =/= 1 |
16 |
13 15
|
eqnetri |
|- ( E ` ndx ) =/= 1 |
17 |
|
basendx |
|- ( Base ` ndx ) = 1 |
18 |
16 17
|
neeqtrri |
|- ( E ` ndx ) =/= ( Base ` ndx ) |
19 |
12 18
|
setsnid |
|- ( E ` W ) = ( E ` ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
20 |
11 19
|
eqtr4di |
|- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
21 |
20
|
3expib |
|- ( -. ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
22 |
9 21
|
pm2.61i |
|- ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
23 |
|
reldmress |
|- Rel dom |`s |
24 |
23
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s A ) = (/) ) |
25 |
1 24
|
eqtrid |
|- ( -. W e. _V -> R = (/) ) |
26 |
25
|
fveq2d |
|- ( -. W e. _V -> ( E ` R ) = ( E ` (/) ) ) |
27 |
3
|
str0 |
|- (/) = ( E ` (/) ) |
28 |
26 27
|
eqtr4di |
|- ( -. W e. _V -> ( E ` R ) = (/) ) |
29 |
|
fvprc |
|- ( -. W e. _V -> ( E ` W ) = (/) ) |
30 |
28 29
|
eqtr4d |
|- ( -. W e. _V -> ( E ` R ) = ( E ` W ) ) |
31 |
30
|
adantr |
|- ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
32 |
22 31
|
pm2.61ian |
|- ( A e. V -> ( E ` R ) = ( E ` W ) ) |
33 |
2 32
|
eqtr4id |
|- ( A e. V -> C = ( E ` R ) ) |