| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmpl.s |  |-  S = ( I mPoly R ) | 
						
							| 2 |  | ressmpl.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | ressmpl.u |  |-  U = ( I mPoly H ) | 
						
							| 4 |  | ressmpl.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | ressmpl.1 |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | ressmpl.2 |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | ressmpl.p |  |-  P = ( S |`s B ) | 
						
							| 8 |  | eqid |  |-  ( I mPwSer H ) = ( I mPwSer H ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) | 
						
							| 10 | 3 8 4 9 | mplbasss |  |-  B C_ ( Base ` ( I mPwSer H ) ) | 
						
							| 11 | 10 | sseli |  |-  ( Y e. B -> Y e. ( Base ` ( I mPwSer H ) ) ) | 
						
							| 12 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 13 |  | eqid |  |-  ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) = ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) | 
						
							| 14 | 12 2 8 9 13 6 | resspsrvsca |  |-  ( ( ph /\ ( X e. T /\ Y e. ( Base ` ( I mPwSer H ) ) ) ) -> ( X ( .s ` ( I mPwSer H ) ) Y ) = ( X ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) ) | 
						
							| 15 | 11 14 | sylanr2 |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` ( I mPwSer H ) ) Y ) = ( X ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) ) | 
						
							| 16 | 4 | fvexi |  |-  B e. _V | 
						
							| 17 | 3 8 4 | mplval2 |  |-  U = ( ( I mPwSer H ) |`s B ) | 
						
							| 18 |  | eqid |  |-  ( .s ` ( I mPwSer H ) ) = ( .s ` ( I mPwSer H ) ) | 
						
							| 19 | 17 18 | ressvsca |  |-  ( B e. _V -> ( .s ` ( I mPwSer H ) ) = ( .s ` U ) ) | 
						
							| 20 | 16 19 | ax-mp |  |-  ( .s ` ( I mPwSer H ) ) = ( .s ` U ) | 
						
							| 21 | 20 | oveqi |  |-  ( X ( .s ` ( I mPwSer H ) ) Y ) = ( X ( .s ` U ) Y ) | 
						
							| 22 |  | fvex |  |-  ( Base ` S ) e. _V | 
						
							| 23 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 24 | 1 12 23 | mplval2 |  |-  S = ( ( I mPwSer R ) |`s ( Base ` S ) ) | 
						
							| 25 |  | eqid |  |-  ( .s ` ( I mPwSer R ) ) = ( .s ` ( I mPwSer R ) ) | 
						
							| 26 | 24 25 | ressvsca |  |-  ( ( Base ` S ) e. _V -> ( .s ` ( I mPwSer R ) ) = ( .s ` S ) ) | 
						
							| 27 | 22 26 | ax-mp |  |-  ( .s ` ( I mPwSer R ) ) = ( .s ` S ) | 
						
							| 28 |  | fvex |  |-  ( Base ` ( I mPwSer H ) ) e. _V | 
						
							| 29 | 13 25 | ressvsca |  |-  ( ( Base ` ( I mPwSer H ) ) e. _V -> ( .s ` ( I mPwSer R ) ) = ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) ) | 
						
							| 30 | 28 29 | ax-mp |  |-  ( .s ` ( I mPwSer R ) ) = ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) | 
						
							| 31 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 32 | 7 31 | ressvsca |  |-  ( B e. _V -> ( .s ` S ) = ( .s ` P ) ) | 
						
							| 33 | 16 32 | ax-mp |  |-  ( .s ` S ) = ( .s ` P ) | 
						
							| 34 | 27 30 33 | 3eqtr3i |  |-  ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) = ( .s ` P ) | 
						
							| 35 | 34 | oveqi |  |-  ( X ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) = ( X ( .s ` P ) Y ) | 
						
							| 36 | 15 21 35 | 3eqtr3g |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |