Step |
Hyp |
Ref |
Expression |
1 |
|
msxms |
|- ( K e. MetSp -> K e. *MetSp ) |
2 |
|
ressxms |
|- ( ( K e. *MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |
3 |
1 2
|
sylan |
|- ( ( K e. MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
6 |
4 5
|
msmet |
|- ( K e. MetSp -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
7 |
6
|
adantr |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
8 |
|
metres |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( Met ` ( ( Base ` K ) i^i A ) ) ) |
9 |
7 8
|
syl |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( Met ` ( ( Base ` K ) i^i A ) ) ) |
10 |
|
resres |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) |
11 |
|
inxp |
|- ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) = ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) |
12 |
11
|
reseq2i |
|- ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
13 |
10 12
|
eqtri |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
14 |
|
eqid |
|- ( K |`s A ) = ( K |`s A ) |
15 |
|
eqid |
|- ( dist ` K ) = ( dist ` K ) |
16 |
14 15
|
ressds |
|- ( A e. V -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
17 |
16
|
adantl |
|- ( ( K e. MetSp /\ A e. V ) -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
18 |
|
incom |
|- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
19 |
14 4
|
ressbas |
|- ( A e. V -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
20 |
19
|
adantl |
|- ( ( K e. MetSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
21 |
18 20
|
syl5eq |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( Base ` K ) i^i A ) = ( Base ` ( K |`s A ) ) ) |
22 |
21
|
sqxpeqd |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) = ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
23 |
17 22
|
reseq12d |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
24 |
13 23
|
syl5eq |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
25 |
21
|
fveq2d |
|- ( ( K e. MetSp /\ A e. V ) -> ( Met ` ( ( Base ` K ) i^i A ) ) = ( Met ` ( Base ` ( K |`s A ) ) ) ) |
26 |
9 24 25
|
3eltr3d |
|- ( ( K e. MetSp /\ A e. V ) -> ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( Met ` ( Base ` ( K |`s A ) ) ) ) |
27 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
28 |
14 27
|
resstopn |
|- ( ( TopOpen ` K ) |`t A ) = ( TopOpen ` ( K |`s A ) ) |
29 |
|
eqid |
|- ( Base ` ( K |`s A ) ) = ( Base ` ( K |`s A ) ) |
30 |
|
eqid |
|- ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
31 |
28 29 30
|
isms |
|- ( ( K |`s A ) e. MetSp <-> ( ( K |`s A ) e. *MetSp /\ ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( Met ` ( Base ` ( K |`s A ) ) ) ) ) |
32 |
3 26 31
|
sylanbrc |
|- ( ( K e. MetSp /\ A e. V ) -> ( K |`s A ) e. MetSp ) |