| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmulgnn.1 |  |-  H = ( G |`s A ) | 
						
							| 2 |  | ressmulgnn.2 |  |-  A C_ ( Base ` G ) | 
						
							| 3 |  | ressmulgnn.3 |  |-  .* = ( .g ` G ) | 
						
							| 4 |  | ressmulgnn.4 |  |-  I = ( invg ` G ) | 
						
							| 5 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 6 | 1 5 | ressbas2 |  |-  ( A C_ ( Base ` G ) -> A = ( Base ` H ) ) | 
						
							| 7 | 2 6 | ax-mp |  |-  A = ( Base ` H ) | 
						
							| 8 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 9 |  | eqid |  |-  ( .g ` H ) = ( .g ` H ) | 
						
							| 10 |  | fvex |  |-  ( Base ` G ) e. _V | 
						
							| 11 | 10 2 | ssexi |  |-  A e. _V | 
						
							| 12 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 13 | 1 12 | ressplusg |  |-  ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) | 
						
							| 14 | 11 13 | ax-mp |  |-  ( +g ` G ) = ( +g ` H ) | 
						
							| 15 |  | seqeq2 |  |-  ( ( +g ` G ) = ( +g ` H ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) | 
						
							| 17 | 7 8 9 16 | mulgnn |  |-  ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 18 |  | simpr |  |-  ( ( N e. NN /\ X e. A ) -> X e. A ) | 
						
							| 19 | 2 18 | sselid |  |-  ( ( N e. NN /\ X e. A ) -> X e. ( Base ` G ) ) | 
						
							| 20 |  | eqid |  |-  seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) | 
						
							| 21 | 5 12 3 20 | mulgnn |  |-  ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N .* X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 22 | 19 21 | syldan |  |-  ( ( N e. NN /\ X e. A ) -> ( N .* X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 23 | 17 22 | eqtr4d |  |-  ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |