Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulgnn.1 |
|- H = ( G |`s A ) |
2 |
|
ressmulgnn.2 |
|- A C_ ( Base ` G ) |
3 |
|
ressmulgnn.3 |
|- .* = ( .g ` G ) |
4 |
|
ressmulgnn.4 |
|- I = ( invg ` G ) |
5 |
|
ressmulgnn0.4 |
|- ( 0g ` G ) = ( 0g ` H ) |
6 |
|
simpr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> N e. NN ) |
7 |
|
simplr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> X e. A ) |
8 |
1 2 3 4
|
ressmulgnn |
|- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
10 |
|
simplr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> X e. A ) |
11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
12 |
1 11
|
ressbas2 |
|- ( A C_ ( Base ` G ) -> A = ( Base ` H ) ) |
13 |
2 12
|
ax-mp |
|- A = ( Base ` H ) |
14 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
15 |
13 5 14
|
mulg0 |
|- ( X e. A -> ( 0 ( .g ` H ) X ) = ( 0g ` G ) ) |
16 |
10 15
|
syl |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( 0 ( .g ` H ) X ) = ( 0g ` G ) ) |
17 |
|
simpr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> N = 0 ) |
18 |
17
|
oveq1d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( 0 ( .g ` H ) X ) ) |
19 |
2 10
|
sselid |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> X e. ( Base ` G ) ) |
20 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
21 |
11 20 3
|
mulg0 |
|- ( X e. ( Base ` G ) -> ( 0 .* X ) = ( 0g ` G ) ) |
22 |
19 21
|
syl |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( 0 .* X ) = ( 0g ` G ) ) |
23 |
16 18 22
|
3eqtr4d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( 0 .* X ) ) |
24 |
17
|
oveq1d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N .* X ) = ( 0 .* X ) ) |
25 |
23 24
|
eqtr4d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
26 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
27 |
26
|
biimpi |
|- ( N e. NN0 -> ( N e. NN \/ N = 0 ) ) |
28 |
27
|
adantr |
|- ( ( N e. NN0 /\ X e. A ) -> ( N e. NN \/ N = 0 ) ) |
29 |
9 25 28
|
mpjaodan |
|- ( ( N e. NN0 /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |