Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulgnnd.1 |
|- H = ( G |`s A ) |
2 |
|
ressmulgnnd.2 |
|- ( ph -> A C_ ( Base ` G ) ) |
3 |
|
ressmulgnnd.3 |
|- ( ph -> X e. A ) |
4 |
|
ressmulgnnd.4 |
|- ( ph -> N e. NN ) |
5 |
4
|
nngt0d |
|- ( ph -> 0 < N ) |
6 |
4
|
adantr |
|- ( ( ph /\ 0 < N ) -> N e. NN ) |
7 |
3
|
adantr |
|- ( ( ph /\ 0 < N ) -> X e. A ) |
8 |
|
eqid |
|- ( G |`s A ) = ( G |`s A ) |
9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
10 |
8 9
|
ressbas2 |
|- ( A C_ ( Base ` G ) -> A = ( Base ` ( G |`s A ) ) ) |
11 |
2 10
|
syl |
|- ( ph -> A = ( Base ` ( G |`s A ) ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ 0 < N ) -> A = ( Base ` ( G |`s A ) ) ) |
13 |
|
eqcom |
|- ( H = ( G |`s A ) <-> ( G |`s A ) = H ) |
14 |
1 13
|
mpbi |
|- ( G |`s A ) = H |
15 |
14
|
fveq2i |
|- ( Base ` ( G |`s A ) ) = ( Base ` H ) |
16 |
15
|
a1i |
|- ( ( ph /\ 0 < N ) -> ( Base ` ( G |`s A ) ) = ( Base ` H ) ) |
17 |
12 16
|
eqtrd |
|- ( ( ph /\ 0 < N ) -> A = ( Base ` H ) ) |
18 |
7 17
|
eleqtrd |
|- ( ( ph /\ 0 < N ) -> X e. ( Base ` H ) ) |
19 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
20 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
21 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
22 |
|
eqid |
|- seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
23 |
19 20 21 22
|
mulgnn |
|- ( ( N e. NN /\ X e. ( Base ` H ) ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
24 |
6 18 23
|
syl2anc |
|- ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
25 |
|
fvexd |
|- ( ph -> ( Base ` G ) e. _V ) |
26 |
25 2
|
ssexd |
|- ( ph -> A e. _V ) |
27 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
28 |
1 27
|
ressplusg |
|- ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) |
29 |
26 28
|
syl |
|- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
30 |
29
|
eqcomd |
|- ( ph -> ( +g ` H ) = ( +g ` G ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ 0 < N ) -> ( +g ` H ) = ( +g ` G ) ) |
32 |
31
|
seqeq2d |
|- ( ( ph /\ 0 < N ) -> seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ) |
33 |
32
|
fveq1d |
|- ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
34 |
2 3
|
sseldd |
|- ( ph -> X e. ( Base ` G ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ 0 < N ) -> X e. ( Base ` G ) ) |
36 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
37 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
38 |
9 27 36 37
|
mulgnn |
|- ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
39 |
6 35 38
|
syl2anc |
|- ( ( ph /\ 0 < N ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
40 |
39
|
eqcomd |
|- ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( N ( .g ` G ) X ) ) |
41 |
24 33 40
|
3eqtrd |
|- ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |
42 |
41
|
ex |
|- ( ph -> ( 0 < N -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) ) |
43 |
5 42
|
mpd |
|- ( ph -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |