| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmulgnnd.1 |  |-  H = ( G |`s A ) | 
						
							| 2 |  | ressmulgnnd.2 |  |-  ( ph -> A C_ ( Base ` G ) ) | 
						
							| 3 |  | ressmulgnnd.3 |  |-  ( ph -> X e. A ) | 
						
							| 4 |  | ressmulgnnd.4 |  |-  ( ph -> N e. NN ) | 
						
							| 5 | 4 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 6 | 4 | adantr |  |-  ( ( ph /\ 0 < N ) -> N e. NN ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ 0 < N ) -> X e. A ) | 
						
							| 8 |  | eqid |  |-  ( G |`s A ) = ( G |`s A ) | 
						
							| 9 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 10 | 8 9 | ressbas2 |  |-  ( A C_ ( Base ` G ) -> A = ( Base ` ( G |`s A ) ) ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> A = ( Base ` ( G |`s A ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ 0 < N ) -> A = ( Base ` ( G |`s A ) ) ) | 
						
							| 13 |  | eqcom |  |-  ( H = ( G |`s A ) <-> ( G |`s A ) = H ) | 
						
							| 14 | 1 13 | mpbi |  |-  ( G |`s A ) = H | 
						
							| 15 | 14 | fveq2i |  |-  ( Base ` ( G |`s A ) ) = ( Base ` H ) | 
						
							| 16 | 15 | a1i |  |-  ( ( ph /\ 0 < N ) -> ( Base ` ( G |`s A ) ) = ( Base ` H ) ) | 
						
							| 17 | 12 16 | eqtrd |  |-  ( ( ph /\ 0 < N ) -> A = ( Base ` H ) ) | 
						
							| 18 | 7 17 | eleqtrd |  |-  ( ( ph /\ 0 < N ) -> X e. ( Base ` H ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 20 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 21 |  | eqid |  |-  ( .g ` H ) = ( .g ` H ) | 
						
							| 22 |  | eqid |  |-  seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) | 
						
							| 23 | 19 20 21 22 | mulgnn |  |-  ( ( N e. NN /\ X e. ( Base ` H ) ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 24 | 6 18 23 | syl2anc |  |-  ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 25 |  | fvexd |  |-  ( ph -> ( Base ` G ) e. _V ) | 
						
							| 26 | 25 2 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 27 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 28 | 1 27 | ressplusg |  |-  ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) | 
						
							| 29 | 26 28 | syl |  |-  ( ph -> ( +g ` G ) = ( +g ` H ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ph -> ( +g ` H ) = ( +g ` G ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ 0 < N ) -> ( +g ` H ) = ( +g ` G ) ) | 
						
							| 32 | 31 | seqeq2d |  |-  ( ( ph /\ 0 < N ) -> seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ) | 
						
							| 33 | 32 | fveq1d |  |-  ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 34 | 2 3 | sseldd |  |-  ( ph -> X e. ( Base ` G ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ 0 < N ) -> X e. ( Base ` G ) ) | 
						
							| 36 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 37 |  | eqid |  |-  seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) | 
						
							| 38 | 9 27 36 37 | mulgnn |  |-  ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 39 | 6 35 38 | syl2anc |  |-  ( ( ph /\ 0 < N ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 40 | 39 | eqcomd |  |-  ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( N ( .g ` G ) X ) ) | 
						
							| 41 | 24 33 40 | 3eqtrd |  |-  ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) | 
						
							| 42 | 41 | ex |  |-  ( ph -> ( 0 < N -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) ) | 
						
							| 43 | 5 42 | mpd |  |-  ( ph -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |