Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulr.1 | |- S = ( R |`s A ) |
|
| ressmulr.2 | |- .x. = ( .r ` R ) |
||
| Assertion | ressmulr | |- ( A e. V -> .x. = ( .r ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulr.1 | |- S = ( R |`s A ) |
|
| 2 | ressmulr.2 | |- .x. = ( .r ` R ) |
|
| 3 | mulridx | |- .r = Slot ( .r ` ndx ) |
|
| 4 | basendxnmulrndx | |- ( Base ` ndx ) =/= ( .r ` ndx ) |
|
| 5 | 4 | necomi | |- ( .r ` ndx ) =/= ( Base ` ndx ) |
| 6 | 1 2 3 5 | resseqnbas | |- ( A e. V -> .x. = ( .r ` S ) ) |