Metamath Proof Explorer


Theorem ressmulr

Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses ressmulr.1
|- S = ( R |`s A )
ressmulr.2
|- .x. = ( .r ` R )
Assertion ressmulr
|- ( A e. V -> .x. = ( .r ` S ) )

Proof

Step Hyp Ref Expression
1 ressmulr.1
 |-  S = ( R |`s A )
2 ressmulr.2
 |-  .x. = ( .r ` R )
3 mulrid
 |-  .r = Slot ( .r ` ndx )
4 basendxnmulrndx
 |-  ( Base ` ndx ) =/= ( .r ` ndx )
5 4 necomi
 |-  ( .r ` ndx ) =/= ( Base ` ndx )
6 1 2 3 5 resseqnbas
 |-  ( A e. V -> .x. = ( .r ` S ) )