Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
|- Rel ( A |` { B } ) |
2 |
|
relxp |
|- Rel ( { B } X. ( A " { B } ) ) |
3 |
|
vex |
|- x e. _V |
4 |
|
vex |
|- y e. _V |
5 |
3 4
|
elimasn |
|- ( y e. ( A " { x } ) <-> <. x , y >. e. A ) |
6 |
|
elsni |
|- ( x e. { B } -> x = B ) |
7 |
6
|
sneqd |
|- ( x e. { B } -> { x } = { B } ) |
8 |
7
|
imaeq2d |
|- ( x e. { B } -> ( A " { x } ) = ( A " { B } ) ) |
9 |
8
|
eleq2d |
|- ( x e. { B } -> ( y e. ( A " { x } ) <-> y e. ( A " { B } ) ) ) |
10 |
5 9
|
bitr3id |
|- ( x e. { B } -> ( <. x , y >. e. A <-> y e. ( A " { B } ) ) ) |
11 |
10
|
pm5.32i |
|- ( ( x e. { B } /\ <. x , y >. e. A ) <-> ( x e. { B } /\ y e. ( A " { B } ) ) ) |
12 |
4
|
opelresi |
|- ( <. x , y >. e. ( A |` { B } ) <-> ( x e. { B } /\ <. x , y >. e. A ) ) |
13 |
|
opelxp |
|- ( <. x , y >. e. ( { B } X. ( A " { B } ) ) <-> ( x e. { B } /\ y e. ( A " { B } ) ) ) |
14 |
11 12 13
|
3bitr4i |
|- ( <. x , y >. e. ( A |` { B } ) <-> <. x , y >. e. ( { B } X. ( A " { B } ) ) ) |
15 |
1 2 14
|
eqrelriiv |
|- ( A |` { B } ) = ( { B } X. ( A " { B } ) ) |