Metamath Proof Explorer


Theorem ressn2

Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024)

Ref Expression
Assertion ressn2
|- ( R |` { A } ) = { <. a , u >. | ( a = A /\ A R u ) }

Proof

Step Hyp Ref Expression
1 dfres2
 |-  ( R |` { A } ) = { <. a , u >. | ( a e. { A } /\ a R u ) }
2 velsn
 |-  ( a e. { A } <-> a = A )
3 2 anbi1i
 |-  ( ( a e. { A } /\ a R u ) <-> ( a = A /\ a R u ) )
4 eqbrb
 |-  ( ( a = A /\ a R u ) <-> ( a = A /\ A R u ) )
5 3 4 bitri
 |-  ( ( a e. { A } /\ a R u ) <-> ( a = A /\ A R u ) )
6 5 opabbii
 |-  { <. a , u >. | ( a e. { A } /\ a R u ) } = { <. a , u >. | ( a = A /\ A R u ) }
7 1 6 eqtri
 |-  ( R |` { A } ) = { <. a , u >. | ( a = A /\ A R u ) }