Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ressn2 | |- ( R |` { A } ) = { <. a , u >. | ( a = A /\ A R u ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 | |- ( R |` { A } ) = { <. a , u >. | ( a e. { A } /\ a R u ) } |
|
2 | velsn | |- ( a e. { A } <-> a = A ) |
|
3 | 2 | anbi1i | |- ( ( a e. { A } /\ a R u ) <-> ( a = A /\ a R u ) ) |
4 | eqbrb | |- ( ( a = A /\ a R u ) <-> ( a = A /\ A R u ) ) |
|
5 | 3 4 | bitri | |- ( ( a e. { A } /\ a R u ) <-> ( a = A /\ A R u ) ) |
6 | 5 | opabbii | |- { <. a , u >. | ( a e. { A } /\ a R u ) } = { <. a , u >. | ( a = A /\ A R u ) } |
7 | 1 6 | eqtri | |- ( R |` { A } ) = { <. a , u >. | ( a = A /\ A R u ) } |