| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelxp1 |  |-  ( <. A , B >. e. ( C X. _V ) -> A e. C ) | 
						
							| 2 |  | df-res |  |-  ( { <. A , B >. } |` C ) = ( { <. A , B >. } i^i ( C X. _V ) ) | 
						
							| 3 |  | incom |  |-  ( { <. A , B >. } i^i ( C X. _V ) ) = ( ( C X. _V ) i^i { <. A , B >. } ) | 
						
							| 4 | 2 3 | eqtri |  |-  ( { <. A , B >. } |` C ) = ( ( C X. _V ) i^i { <. A , B >. } ) | 
						
							| 5 |  | disjsn |  |-  ( ( ( C X. _V ) i^i { <. A , B >. } ) = (/) <-> -. <. A , B >. e. ( C X. _V ) ) | 
						
							| 6 | 5 | biimpri |  |-  ( -. <. A , B >. e. ( C X. _V ) -> ( ( C X. _V ) i^i { <. A , B >. } ) = (/) ) | 
						
							| 7 | 4 6 | eqtrid |  |-  ( -. <. A , B >. e. ( C X. _V ) -> ( { <. A , B >. } |` C ) = (/) ) | 
						
							| 8 | 1 7 | nsyl5 |  |-  ( -. A e. C -> ( { <. A , B >. } |` C ) = (/) ) |