Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressplusg.1 | |- H = ( G |`s A ) |
|
| ressplusg.2 | |- .+ = ( +g ` G ) |
||
| Assertion | ressplusg | |- ( A e. V -> .+ = ( +g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | |- H = ( G |`s A ) |
|
| 2 | ressplusg.2 | |- .+ = ( +g ` G ) |
|
| 3 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 4 | basendxnplusgndx | |- ( Base ` ndx ) =/= ( +g ` ndx ) |
|
| 5 | 4 | necomi | |- ( +g ` ndx ) =/= ( Base ` ndx ) |
| 6 | 1 2 3 5 | resseqnbas | |- ( A e. V -> .+ = ( +g ` H ) ) |