Metamath Proof Explorer


Theorem ressplusg

Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses ressplusg.1
|- H = ( G |`s A )
ressplusg.2
|- .+ = ( +g ` G )
Assertion ressplusg
|- ( A e. V -> .+ = ( +g ` H ) )

Proof

Step Hyp Ref Expression
1 ressplusg.1
 |-  H = ( G |`s A )
2 ressplusg.2
 |-  .+ = ( +g ` G )
3 plusgid
 |-  +g = Slot ( +g ` ndx )
4 basendxnplusgndx
 |-  ( Base ` ndx ) =/= ( +g ` ndx )
5 4 necomi
 |-  ( +g ` ndx ) =/= ( Base ` ndx )
6 1 2 3 5 resseqnbas
 |-  ( A e. V -> .+ = ( +g ` H ) )