Metamath Proof Explorer


Theorem ressply10g

Description: A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ressply.1
|- S = ( Poly1 ` R )
ressply.2
|- H = ( R |`s T )
ressply.3
|- U = ( Poly1 ` H )
ressply.4
|- B = ( Base ` U )
ressply.5
|- ( ph -> T e. ( SubRing ` R ) )
ressply10g.6
|- Z = ( 0g ` S )
Assertion ressply10g
|- ( ph -> Z = ( 0g ` U ) )

Proof

Step Hyp Ref Expression
1 ressply.1
 |-  S = ( Poly1 ` R )
2 ressply.2
 |-  H = ( R |`s T )
3 ressply.3
 |-  U = ( Poly1 ` H )
4 ressply.4
 |-  B = ( Base ` U )
5 ressply.5
 |-  ( ph -> T e. ( SubRing ` R ) )
6 ressply10g.6
 |-  Z = ( 0g ` S )
7 eqid
 |-  ( algSc ` S ) = ( algSc ` S )
8 eqid
 |-  ( algSc ` U ) = ( algSc ` U )
9 1 7 2 3 5 8 subrg1ascl
 |-  ( ph -> ( algSc ` U ) = ( ( algSc ` S ) |` T ) )
10 9 fveq1d
 |-  ( ph -> ( ( algSc ` U ) ` ( 0g ` H ) ) = ( ( ( algSc ` S ) |` T ) ` ( 0g ` H ) ) )
11 eqid
 |-  ( 0g ` H ) = ( 0g ` H )
12 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
13 2 subrgring
 |-  ( T e. ( SubRing ` R ) -> H e. Ring )
14 5 13 syl
 |-  ( ph -> H e. Ring )
15 3 8 11 12 14 ply1ascl0
 |-  ( ph -> ( ( algSc ` U ) ` ( 0g ` H ) ) = ( 0g ` U ) )
16 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
17 2 16 subrg0
 |-  ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) )
18 5 17 syl
 |-  ( ph -> ( 0g ` R ) = ( 0g ` H ) )
19 subrgsubg
 |-  ( T e. ( SubRing ` R ) -> T e. ( SubGrp ` R ) )
20 16 subg0cl
 |-  ( T e. ( SubGrp ` R ) -> ( 0g ` R ) e. T )
21 5 19 20 3syl
 |-  ( ph -> ( 0g ` R ) e. T )
22 18 21 eqeltrrd
 |-  ( ph -> ( 0g ` H ) e. T )
23 22 fvresd
 |-  ( ph -> ( ( ( algSc ` S ) |` T ) ` ( 0g ` H ) ) = ( ( algSc ` S ) ` ( 0g ` H ) ) )
24 10 15 23 3eqtr3d
 |-  ( ph -> ( 0g ` U ) = ( ( algSc ` S ) ` ( 0g ` H ) ) )
25 18 fveq2d
 |-  ( ph -> ( ( algSc ` S ) ` ( 0g ` R ) ) = ( ( algSc ` S ) ` ( 0g ` H ) ) )
26 subrgrcl
 |-  ( T e. ( SubRing ` R ) -> R e. Ring )
27 5 26 syl
 |-  ( ph -> R e. Ring )
28 1 7 16 6 27 ply1ascl0
 |-  ( ph -> ( ( algSc ` S ) ` ( 0g ` R ) ) = Z )
29 24 25 28 3eqtr2rd
 |-  ( ph -> Z = ( 0g ` U ) )