| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressply1.s |  |-  S = ( Poly1 ` R ) | 
						
							| 2 |  | ressply1.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | ressply1.u |  |-  U = ( Poly1 ` H ) | 
						
							| 4 |  | ressply1.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | ressply1.2 |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 6 |  | ressply1.p |  |-  P = ( S |`s B ) | 
						
							| 7 |  | eqid |  |-  ( PwSer1 ` H ) = ( PwSer1 ` H ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( PwSer1 ` H ) ) = ( Base ` ( PwSer1 ` H ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 10 | 1 2 3 4 5 7 8 9 | ressply1bas2 |  |-  ( ph -> B = ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` S ) ) ) | 
						
							| 11 |  | inss2 |  |-  ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` S ) ) C_ ( Base ` S ) | 
						
							| 12 | 10 11 | eqsstrdi |  |-  ( ph -> B C_ ( Base ` S ) ) | 
						
							| 13 | 6 9 | ressbas2 |  |-  ( B C_ ( Base ` S ) -> B = ( Base ` P ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> B = ( Base ` P ) ) |