Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
|- S = ( Poly1 ` R ) |
2 |
|
ressply.2 |
|- H = ( R |`s T ) |
3 |
|
ressply.3 |
|- U = ( Poly1 ` H ) |
4 |
|
ressply.4 |
|- B = ( Base ` U ) |
5 |
|
ressply.5 |
|- ( ph -> T e. ( SubRing ` R ) ) |
6 |
|
ressply1mon1p.m |
|- M = ( Monic1p ` R ) |
7 |
|
ressply1mon1p.n |
|- N = ( Monic1p ` H ) |
8 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
9 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
10 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
12 |
1 8 9 10 6 11
|
ismon1p |
|- ( p e. M <-> ( p e. ( Base ` S ) /\ p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) |
13 |
12
|
anbi2i |
|- ( ( p e. B /\ p e. M ) <-> ( p e. B /\ ( p e. ( Base ` S ) /\ p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) ) |
14 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
15 |
1 2 3 4 5 14
|
ressply1bas |
|- ( ph -> B = ( Base ` ( S |`s B ) ) ) |
16 |
14 8
|
ressbasss |
|- ( Base ` ( S |`s B ) ) C_ ( Base ` S ) |
17 |
15 16
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` S ) ) |
18 |
17
|
sseld |
|- ( ph -> ( p e. B -> p e. ( Base ` S ) ) ) |
19 |
18
|
pm4.71d |
|- ( ph -> ( p e. B <-> ( p e. B /\ p e. ( Base ` S ) ) ) ) |
20 |
19
|
anbi1d |
|- ( ph -> ( ( p e. B /\ ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) <-> ( ( p e. B /\ p e. ( Base ` S ) ) /\ ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) ) ) |
21 |
|
13an22anass |
|- ( ( p e. B /\ ( p e. ( Base ` S ) /\ p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) <-> ( ( p e. B /\ p e. ( Base ` S ) ) /\ ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) ) |
22 |
20 21
|
bitr4di |
|- ( ph -> ( ( p e. B /\ ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) <-> ( p e. B /\ ( p e. ( Base ` S ) /\ p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) ) ) |
23 |
1 2 3 4 5 9
|
ressply10g |
|- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
24 |
23
|
neeq2d |
|- ( ph -> ( p =/= ( 0g ` S ) <-> p =/= ( 0g ` U ) ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ p e. B ) -> ( p =/= ( 0g ` S ) <-> p =/= ( 0g ` U ) ) ) |
26 |
|
simpr |
|- ( ( ph /\ p e. B ) -> p e. B ) |
27 |
5
|
adantr |
|- ( ( ph /\ p e. B ) -> T e. ( SubRing ` R ) ) |
28 |
2 10 3 4 26 27
|
ressdeg1 |
|- ( ( ph /\ p e. B ) -> ( ( deg1 ` R ) ` p ) = ( ( deg1 ` H ) ` p ) ) |
29 |
28
|
fveq2d |
|- ( ( ph /\ p e. B ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) ) |
30 |
2 11
|
subrg1 |
|- ( T e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` H ) ) |
31 |
5 30
|
syl |
|- ( ph -> ( 1r ` R ) = ( 1r ` H ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ p e. B ) -> ( 1r ` R ) = ( 1r ` H ) ) |
33 |
29 32
|
eqeq12d |
|- ( ( ph /\ p e. B ) -> ( ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) <-> ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) |
34 |
25 33
|
anbi12d |
|- ( ( ph /\ p e. B ) -> ( ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) <-> ( p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) ) |
35 |
34
|
pm5.32da |
|- ( ph -> ( ( p e. B /\ ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) <-> ( p e. B /\ ( p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) ) ) |
36 |
|
3anass |
|- ( ( p e. B /\ p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) <-> ( p e. B /\ ( p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) ) |
37 |
35 36
|
bitr4di |
|- ( ph -> ( ( p e. B /\ ( p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) <-> ( p e. B /\ p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) ) |
38 |
22 37
|
bitr3d |
|- ( ph -> ( ( p e. B /\ ( p e. ( Base ` S ) /\ p =/= ( 0g ` S ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) <-> ( p e. B /\ p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) ) |
39 |
13 38
|
bitr2id |
|- ( ph -> ( ( p e. B /\ p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) <-> ( p e. B /\ p e. M ) ) ) |
40 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
41 |
|
eqid |
|- ( deg1 ` H ) = ( deg1 ` H ) |
42 |
|
eqid |
|- ( 1r ` H ) = ( 1r ` H ) |
43 |
3 4 40 41 7 42
|
ismon1p |
|- ( p e. N <-> ( p e. B /\ p =/= ( 0g ` U ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` H ) ` p ) ) = ( 1r ` H ) ) ) |
44 |
|
elin |
|- ( p e. ( B i^i M ) <-> ( p e. B /\ p e. M ) ) |
45 |
39 43 44
|
3bitr4g |
|- ( ph -> ( p e. N <-> p e. ( B i^i M ) ) ) |
46 |
45
|
eqrdv |
|- ( ph -> N = ( B i^i M ) ) |