Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1.s |
|- S = ( Poly1 ` R ) |
2 |
|
ressply1.h |
|- H = ( R |`s T ) |
3 |
|
ressply1.u |
|- U = ( Poly1 ` H ) |
4 |
|
ressply1.b |
|- B = ( Base ` U ) |
5 |
|
ressply1.2 |
|- ( ph -> T e. ( SubRing ` R ) ) |
6 |
|
ressply1.p |
|- P = ( S |`s B ) |
7 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
8 |
|
eqid |
|- ( 1o mPoly H ) = ( 1o mPoly H ) |
9 |
|
eqid |
|- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
10 |
3 9 4
|
ply1bas |
|- B = ( Base ` ( 1o mPoly H ) ) |
11 |
|
1on |
|- 1o e. On |
12 |
11
|
a1i |
|- ( ph -> 1o e. On ) |
13 |
|
eqid |
|- ( ( 1o mPoly R ) |`s B ) = ( ( 1o mPoly R ) |`s B ) |
14 |
7 2 8 10 12 5 13
|
ressmplvsca |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` ( 1o mPoly H ) ) Y ) = ( X ( .s ` ( ( 1o mPoly R ) |`s B ) ) Y ) ) |
15 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
16 |
3 8 15
|
ply1vsca |
|- ( .s ` U ) = ( .s ` ( 1o mPoly H ) ) |
17 |
16
|
oveqi |
|- ( X ( .s ` U ) Y ) = ( X ( .s ` ( 1o mPoly H ) ) Y ) |
18 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
19 |
1 7 18
|
ply1vsca |
|- ( .s ` S ) = ( .s ` ( 1o mPoly R ) ) |
20 |
4
|
fvexi |
|- B e. _V |
21 |
6 18
|
ressvsca |
|- ( B e. _V -> ( .s ` S ) = ( .s ` P ) ) |
22 |
20 21
|
ax-mp |
|- ( .s ` S ) = ( .s ` P ) |
23 |
|
eqid |
|- ( .s ` ( 1o mPoly R ) ) = ( .s ` ( 1o mPoly R ) ) |
24 |
13 23
|
ressvsca |
|- ( B e. _V -> ( .s ` ( 1o mPoly R ) ) = ( .s ` ( ( 1o mPoly R ) |`s B ) ) ) |
25 |
20 24
|
ax-mp |
|- ( .s ` ( 1o mPoly R ) ) = ( .s ` ( ( 1o mPoly R ) |`s B ) ) |
26 |
19 22 25
|
3eqtr3i |
|- ( .s ` P ) = ( .s ` ( ( 1o mPoly R ) |`s B ) ) |
27 |
26
|
oveqi |
|- ( X ( .s ` P ) Y ) = ( X ( .s ` ( ( 1o mPoly R ) |`s B ) ) Y ) |
28 |
14 17 27
|
3eqtr4g |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |